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Abstract 
Air quality modeling is a challenging task due to the complex interactions among meteorological, chemical, 
and physical processes. Accurate predictions require sophisticated models that can simulate these 
interactions under varying environmental conditions. This study advances micro-scale urban air quality 
modeling knowledge by considering solar radiation-included Computational Fluid Dynamics (CFD) 
simulations. Using data on air pollution concentration monitored in Antwerp, Belgium, this research 
evaluates the benefits of incorporating non-isothermal conditions and solar radiation into CFD air 
pollution dispersion models compared to the traditional neutral boundary layer assumption. The study 
analyzes twelve hourly meteorological case studies under non-isothermal conditions with solar radiation 
included to assess the accuracy and performance of both approaches. Findings reveal that the non-neutral 
CFD model outperforms the neutral model in 75% of the scenarios, with differences in the concentration 
maps ranging from 8% to 32%. These disparities significantly affect the identification of concentration 
hotspots and pollutant level predictions. Accuracy assessments against in-field monitored data show 
notable reductions in relative errors for the non-neutral model, averaging 21%, compared to 40% for the 
neutral model. While both models perform similarly under low wind speed and low solar radiation 
conditions, the non-neutral model generally demonstrates superior performance under higher solar 
radiation and more variable wind speeds. Overall, the non-neutral model offers an improvement factor of 
around 2 compared to the neutral model. The integration of solar radiation in CFD simulations represents 
a significant advancement in urban air quality modeling, with promising implications for enhancing air 
quality management and urban planning decisions. 
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1. Introduction 

Air pollution has become a significant issue in recent decades (Manisalidis et al., 2020), consequently 
becoming a prominent challenge for modern societies (Agathokleous and Sicard, 2021). In urban areas, air 
quality can be particularly poor due to a lot of anthropogenic sources of air pollutants such as traffic-
related emissions and residential heating (Thunis, 2018). On the meantime, people are increasingly living 
in such places (United Nations, 2019), which exacerbates both the problems of anthropogenic emissions 
as well as the number of people exposed to air pollution (Chen et al., 2017). To face this issue, European 
cities have taken various actions to improve air quality with the aim of protecting human health and 
improving the well-being of their citizens (Viana et al., 2020). However, local air pollution mitigation 
measures can also be counterproductive (Santiago et al., 2024) and, despite significant progress, many 
European cities still exceed European Union (EU) and World Health Organization (WHO) air quality 
standards (EEA, 2023). It is therefore essential to be able to define effective planning strategies to 
improve air quality (Rodrigues et al., 2021) and to test them at an early stage to ensure their effectiveness. 

Numerical modeling is a valuable tool for such purpose (O’Regan and Nyhan, 2023). Among the many 
different types of models available, each adapted to specific spatial and temporal scales (Toparlar et al., 
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2017), computational fluid dynamics (CFD) models have shown a strong interest for modeling air quality 
in urban areas (Pantusheva et al., 2022). Indeed, urban infrastructures and their morphological 
characteristics have a significant impact on air pollution dispersion (Badach et al., 2023; Tian et al., 2019), 
a point that is explicitly accounted for by computational fluid dynamics (CFD) models. Such model is, 
therefore, highly suitable for modeling the precise effects of street canyons (Hang et al., 2022; Sin et al., 
2023) and other civil engineering structures (Choi et al., 2023; Ming et al., 2023) on wind distribution, 
thus, on air pollution dispersion. Besides, CFD models also allow many specific phenomena to be 
considered and modeled, such as the effects of vegetation on wind flow and air pollutant concentration 
(Guo et al., 2023; Wang et al., 2023), as well as the influence of the traffic on pollutant dispersion (Zheng 
and Yang, 2022, 2021). Despite this, CFD models are mostly used to study idealized cases in order to 
characterize the influence of specific parameters on pollutant dispersion, rather than in applied air quality 
contexts (Pantusheva et al., 2022). Recent work comparing eleven CFD models to one Lagrangian, three 
Gaussian and one artificial intelligence (AI) models against in situ experimental data has nevertheless 
shown the value of CFD models in assessing real urban air quality. Indeed, authors have shown that such a 
model outperforms the other types of models, particularly the Gaussian ones, which tend to 
underestimate concentration gradients (Martín et al., 2024). Their findings align with the results of the 
European action COST ES 1006, which comprehensively evaluated the performance and capabilities of 
various modeling approaches—ranging from simple Gaussian models to advanced CFD models—in 
predicting air quality within the built environment (Baumann-Stanzer et al., 2015). 

In this way, CFD modeling is a key tool for simulating air quality in urban areas under real and 
uncontrolled conditions. However, in contrast to other conventionally used models such as Gaussian ones, 
it is common in real-context urban CFD simulations to assume isothermal conditions (i.e., neutral 
boundary layer conditions) rather than including non-isothermal ones. While non-isothermal conditions 
are often studied in idealized simulations, their incorporation in real-context scenarios remains less 
frequent due to the computational complexity involved (Reiminger et al., 2024). This assumption can yield 
good results when several simulations are combined to obtain averaged monthly pollutant concentrations 
(Martín et al., 2024), but this result may depend on the case studied. Errors and misleading 
interpretations could also be made if the results were studied one by one, on an hourly basis for instance. 
Indeed, studies have shown that non-isothermal conditions, and particularly unstable thermal conditions, 
significantly affect airflow and ventilation in urban street canyon (Chen et al., 2023) as well as the 
dispersion of air pollutants (Guo et al., 2023). Such studies provide valuable information on the influence 
of heat transfer on air pollution dispersion. However, they are also usually based on strong assumptions, 
such as setting constant hypothetical temperatures on building facades. In practice, constant 
temperatures are rarely observed on entire facades of buildings, as a given facade of a building may be 
partly sunny and partly shaded at the same time, depending on the position of the sun and the 
surrounding buildings. This point also applies to horizontal surfaces, such as roofs or the ground. The 
latter issue also considerably modifies the dispersion of atmospheric pollutants (Kubilay et al., 2018). 
Therefore, further research is required to evaluate the benefits of incorporating non-isothermal 
conditions and solar radiation into micro-scale modeling of air pollution dispersion in real urban areas, 
which is the focus of the present work. 

The aim of this study is to compare the results obtained by two CFD air quality models with data 
measured in a real urban environment limited to diurnal summertime meteorological cases. In particular, 
the two models considered correspond to CFD models with (1) the usual assumption of a neutral 
boundary layer condition (no thermal effects) and (2) considering thermal effects, surface temperatures 
and shadows modeled by a solar radiative model. To achieve this objective, several CFD simulations were 
performed in two districts of the city of Antwerp, Belgium, considering real hourly meteorological 
conditions observed during daytime (including wind direction and speed, air temperature, solar radiation, 
and time). The concentrations obtained by the two CFD models were first compared with each other, 
before being compared with hourly NO2 concentrations measured by a local air quality monitoring station. 
All the details about the study location, data availability and information about the numerical model are 
described in Section 2. Results are presented in Section 3 before being discussed in Section 4. Lastly, 
conclusions and perspectives of this work are drawn in Section 5.  
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2. Material and methods 

2.1. Study location and data availability  

The study was conducted in the city of Antwerp, Belgium, in an area running through the Borgerhout and 
Zurenborg districts (from 51.2083, 4.4279 to 51.2118, 4.4347 GPS coordinates). This densely built-up 
area, characteristic of the cities of Western Europe, primarily consists of  two- to three-storey commercial 
and residential building, forming street canyons. Large open areas are also present, consisting of car parks 
and green areas. Although there are no major industrial sources of air pollution in the studied area,  
numerous sources of air pollutants from traffic are present, notably the N184 national road. Lastly, an air 
quality (AQ) station operated by the Flemish Environment Agency (VMM) is located in the center of the 
area along the N184. The exact location of the area of interest is given in Figure 1, which also indicates the 
AQ station location. 

 

 

Figure 1. Satellite map showing the study area boundaries (yellow rectangle) and locating the air quality 
(AQ) station location (red circle). 

 
All input data used in this study were provided by the FAIRMODE (Forum for Air Quality Modeling in 
Europe) community. Detailed information about these data can be found in Martín et al. (2024). In 
summary, the available data include: 

• Buildings and roads layout: 3D LOD1 (level of detail 1) data corresponding to 2D sketches (with 
associated heights for the building), acquired from the 3D GRB Informatic Vlaanderen and 
available on their website (https://overheid.vlaanderen.be/grb-3dgrb).  
 

• Meteorological data: corresponding to hourly information of averaged wind direction, wind 
velocity, temperature, total solar radiation and humidity monitored throughout 2016 at the 
Antwerp-Luchtbal measurement station (5 km north of the studied area, coordinates: 51.261, 
4.425). Although a station located within the city center would have been preferable to better 
capture urban microclimatic conditions, the Antwerp-Luchtbal station was the nearest 
meteorological station available. 
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• Emission data: corresponding to traffic-related emission of nitrogen oxides (NOx), nitrogen 
dioxide (NO2), black carbon (BC) and particulate matters (PM10 and PM2.5) obtained using the 
Fastrace Traffic Model v2.1 (Hooyberghs et al., 2022). These data consider the official 2016 traffic 
and fleet data from the Department for Mobility and is based on the COPERT 5 emission factors. 
 

• Background air pollution concentrations: corresponding to hourly concentrations of nitric 
oxide (NO), ozone (O3), NO2, BC, PM10 and PM2.5 obtained by the VITO (Flemish Institute for 
Technological Research), using the RIO model (Janssen et al., 2008). 

Lastly, while numerous pollutants are available in the data collection, this work is limited to the study of 
nitrogen dioxide (NO2) concentrations. 

 

2.2. Numerical model  

2.2.1. Software and calculation methodology  

All the simulations were performed through the OpenFOAM v2306 CFD software 
(https://www.openfoam.com/news/main-news/openfoam-v2306), working in parallel calculation on a 
32-core Intel® Xeon(R) Silver 4216 CPU E5–2670 2.10 GHz computing machine under Ubuntu 20.04.5 
LTS. 

The CFD solver used in this study is the buoyantBoussinesqPimpleFoam solver, a transient mixed 
convection solver from the OpenFOAM library able of reproducing both forced and natural convection. In 
particular, this solver solves the incompressible Navier-Stokes equations including turbulent- but also 
buoyancy-driven flows by considering the Boussinesq approximation. Note that this approximation, well 
known for simplifying physics problems and often used in wind engineering and air pollution assessment 
(Ghobadi and Nasrollahi, 2021; Liu et al., 2021), only introduces errors of the order of 1% if the 
temperature differences between extreme values are below 15 K for air (Ferziger and Perić, 2002). 

An Unsteady Reynolds-Averaged Navier-Stokes (URANS) methodology was chosen to solve the Navier-
Stokes equations, as it provides better, or at least equivalent results compared to steady-state calculations 
(Tominaga and Stathopoulos, 2017). The RNG k-epsilon turbulent closure scheme is used to solve the 
Reynolds stress tensor arising when using the RANS methodology, this closure scheme leading to good 
results for urban air pollution dispersion modeling through CFD RANS in a real urban context (Reiminger 
et al., 2024). 

The native buoyantBoussinesqPimpleFoam solver from the OpenFOAM library has been slightly modified 
to account for pollutant dispersion by implementing the turbulent advection-diffusion equation (1) 
governing passive scalar transport: 

 

𝜕𝐶

𝜕𝑡
 +  ∇. (𝐶𝑢) −  ∇. [(𝐷𝑚 +

𝜈𝑡

𝑆𝑐𝑡

) ∇𝐶] =  𝐸         (1) 

 

where 𝐶 is the pollutant concentration [g.m-3], 𝑡 is the time [s], 𝑢 is the velocity [m.s-1], 𝐷𝑚 is the molecular 
diffusion coefficient [m-2.s-1], 𝜈𝑡  is the turbulent diffusivity [m-2.s-1], 𝑆𝑐𝑡  is the turbulent Schmidt number 
set to 0.7 [-] and 𝐸 is the emission of pollutants [g.s-1]. 

Given that the numerical solver does not account for any chemical mechanism and that the pollutant of 
interest in this study is nitrogen dioxides (NO2), the empirical function of Bächlin et al. (Bächlin et al., 
2008) given in equation (2) was used to derive NO2 concentrations from the dispersion of nitrogen oxides 
(NOx) emissions related to road traffic. This mathematical function was initially built to retrieve NO2 
concentrations from NOx concentration measurements. Its benefits in the purpose of micro-scale modeling 
of NO2 concentrations in urban areas was recently demonstrated through CFD modeling (Reiminger et al., 
2024) and AI modeling (Jurado et al., 2023).  
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[𝑁𝑂2] =
29. [𝑁𝑂𝑥]

[𝑁𝑂𝑥] + 35
+ 0.217 [𝑁𝑂𝑥]        (2) 

 
where [𝑁𝑂2] and [𝑁𝑂𝑥] are nitrogen dioxide and nitrogen oxides concentrations [g/m3], respectively. 
 
Then, NO2 background concentrations available in the input data were added to the results of equation (2) 
to include external sources of this pollutant in the final result of modeling. 
 
Lastly, the radiation model considered and used in this study for the non-neutral simulations corresponds 
to the solarLoad model included in the OpenFOAM library. In particular, this model requires the latitude, 
longitude, solar radiation, day of the year and time to be specified in order to calculate the position of the 
sun and the radiative heat flux induced on all the wall surfaces in the computational domain, which 
includes vertical facades, horizontal roofs, ground surfaces, and other infrastructure elements found in 
reality. 

 

2.2.2. Solver validation 

Validation under neutral boundary layer conditions 

A transient isothermal CFD solver from OpenFOAM (pimpleFoam) using the same methodology as 
described in the previous section (URANS, RNG k-epsilon turbulence model, Bachlin’s empirical function, 
etc.) was used in a prior work also carried out on Antwerp, Belgium (Reiminger et al., 2024). In this study, 
measurements from 73 NO₂ passive samplers deployed across an 800 × 800 m² area including street 
canyons of various aspect ratios, open areas, roads with high traffic volumes, and a built-up environment 
representative of typical North-West European cities, provided a robust dataset for validating the 
modeling approach. The results of this solver showed very good agreement between modeled and 
monitored NO2 concentrations, leading to around 15% discrepancies and resulting in performance criteria 
(𝐹𝐴𝐶2 = 1.0, 𝑀𝐹𝐵 = 0.11, 𝑁𝑀𝑆𝐸 = 0.03, 𝑅 = 0.73, 𝑇𝑎𝑟𝑔𝑒𝑡 = 0.91, with  𝐹𝐴𝐶2  the factor of modeled values 
within a factor of two of observations, 𝑀𝐹𝐵 the Mean Fractional Bias, 𝑁𝑀𝑆𝐸 the Normalized Mean 
Squared Error and 𝑅 the Pearson correlation coefficient) largely satisfying ambient air quality model 
acceptance built for urban dispersion model evaluation (Hanna and Chang, 2012; Thunis et al., 2012). The 
equations of the performance criteria are given in Supplementary material SM1.  

When comparing the results of the previously validated pimpleFoam solver to the non-isothermal solver 
employed in this work (buoyantBoussinesqPimpleFoam) under identical meteorological conditions, with 
thermal effects disabled and the same computational setup as in Reiminger et al. (2024), both solvers 
produced nearly identical outcomes. Across the entire computational domain, the maximum discrepancies 
between the two numerical solutions remained below 1%. Consequently, the 
buoyantBoussinesqPimpleFoam solver used in the present study can be considered validated under neutral 
boundary layer conditions. 

 

Validation under unstable boundary layer conditions 

The numerical model was compared against wind tunnel experimental data provided by (Cui et al., 2016) 
under non-neutral conditions. Their experimental setup consisted of a complex 3D configuration including 
two successive buildings of distinct heights, a pollutant emitted at the top of the upwind building, a room 
inside the downwind building opened by two windows as well as a heated ground surface between the 
two buildings to simulate a local heat source. Temperature (horizontal profile), velocity and pollutant 
concentration (vertical profiles) were available outdoor between the two buildings and velocity and 
pollutant concentrations (horizontal profile) were available indoor in the middle of the downwind 
building’s room. A schematic representation of the numerical model used to replicate the experimental 
setup is given in the supplementary material Figure SM2.1, while comparison between experimental and 
modeled data are given in Figure SM2.2 for the outdoor environment and Figure SM2.3 for the indoor 
environment for a very unstable case leading to a Richardson number 𝑅𝑖 of -1.22. The results are 
presented in a dimensionless form, as detailed in (Cui et al., 2016).  
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Very good agreements between experimental data and numerical model results are obtained outdoor, for 
all the parameters experimentally followed (temperature, wind speed and pollutant concentration), 
leading to around 15% of differences on the concentration field. The results of this comparison also 
satisfied ambient air quality model acceptance criteria with 𝐹𝐴𝐶2 = 1.0, 𝑀𝐹𝐵 = 0.12, 𝑁𝑀𝑆𝐸 = 0.02, 
𝑅 = 0.97 and 𝑇𝑎𝑟𝑔𝑒𝑡 = 0.38. The same observations can be made for the indoor environment, where the 
results between the modeled and measured data (wind speed and pollutant concentration) are also very 
close (8 % of variation on the concentration field), with the exception of the wind velocities at the first two 
experimental points, which are highly overestimated by the numerical model. This overestimation is 
probably due to an insufficient evaluation of the airflow pattern at the constriction between the outside 
atmosphere and the upstream window.  

Based on these results, the numerical model used in this study is considered validated, both outdoor and 
indoor, under unstable atmospheric conditions. 

 

Validation of the solar radiation model 

The validation presented in the previous section demonstrates that the model is able to properly 
reproduce the impact of the thermal effects induced by heated surfaces on both the airflow and the 
dispersion of air pollutants. A final validation step was nevertheless required to assess the performance of 
the radiative model in accurately predicting surface temperatures based on the position of the sun, the 
induced radiation and the surrounding obstacles. To do so, the experimental setup and results from 
(Idczak et al., 2010, 2007) have been used. Their experimental setup consisted of  four lines of containers 
lined up in parallel and placed in an open area located in Guerville, France. They monitored reference 
wind (velocity and direction) and reference atmospheric conditions (ambient temperature, solar 
radiation, etc.) as well as the surface temperature of the middle containers’ facades for different heights. 
Their experimental results were given for a sunny day (28 July 2004) and a cloudy day (12 October 2004).  

The sunny day was hourly modeled using the buoyantBoussinesqPimpleFoam solver coupled with the solar 
radiative model, and the modeled surface temperature obtained are given in the supplementary materials 
Figure SM3 for three different heights. According to the results, wall surface temperatures are very well 
reproduced by the numerical model for the whole day of 28 July 2004. An averaged deviation of 5.2 % 
when comparing modeled and measured surface temperatures is achieved, with an average deviation of 
3.5 % during daytime and 7.2 % during nighttime. This slightly larger deviation at night could be partly 
attributed to nocturnal terrestrial radiation and to the residual heat stored within urban surfaces, which 
continue to release energy into the atmosphere even in the absence of solar radiation, depending on their 
thermal properties. 

Based on these results, the coupling between the solar radiation model and the numerical model for 
reproducing surface temperatures from solar radiation was considered valid. 

 

2.2.3. Computational domain and boundary conditions 

All simulations correspond to fully 3D geometries obtained considering buildings and roads present in the 
area of interest during 2016. An insight of the obtained geometry is given in Figure 2 with the red lines 
corresponding to roads where traffic-related emissions were available, thus considered in the numerical 
model. 

The computational domain was substantially greater than the built-up area modeled to follow COST 
Action 732 guidelines (Franke et al., 2007) concerning distances between buildings and domain 
boundaries (5Hmax between buildings and inlet, outlet, lateral, and top boundaries, with Hmax the height of 
the higher building). 
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Figure 2. Overview of the 3D numerical model with red lines corresponding to roads for which emission 
data were available and modeled. 

 

In this study, a mesh size of 1 meter was employed near wall boundaries, including the ground and 
buildings, with further refinement to 0.5 meters in proximity to pollutant sources. The meshes used in this 
study are unstructured and were generated with the snappyHexMesh utility provided in OpenFOAM 
v2306. With a domain size of 1 × 1 km², this approach resulted in a number of grid cells ranging between 8 
and 10 million, depending on the specific scenario. This mesh size, which produces results insensitive to 
mesh size variations (Ioannidis et al., 2024; Santiago et al., 2019), was also previously used to validate the 
neutral version of the CFD model against 73 in-situ experimental concentration measurements 
(Reiminger et al., 2024). It is important to note that a 0.5-meter mesh size can be considered as relatively 
small for CFD modeling of air pollution in full-scale real urban environments. Indeed, mesh sizes in such 
studies are more commonly found to be around 1 meter  (Sanchez et al., 2017; Vranckx et al., 2015) or 
larger, sometimes extending up to 2 meters (Martín et al., 2024). 

Velocity profiles following eq. (3) and turbulence profiles following eq. (4 and 5) were specified at the 
inlet boundary following Richards and Norris (2011) recommendations, and a free-stream condition was 
applied at the outlet boundary to allow the flow to fully develop. No-slip conditions were set to all wall 
boundaries (ground and building faces and roofs) and symmetry conditions to the lateral and upper 
boundaries.  

𝑈 =
𝑢∗

𝜅
𝑙𝑛 (

𝑧 + 𝑧0

𝑧0

)         (3) 

𝑘 =
𝑢∗

2

√𝐶µ

         (4) 

𝜀 =
𝑢∗

3

𝜅. 𝑧
         (5) 

 

where 𝑈 is the wind velocity [m.s-1], 𝑘 is the turbulent kinetic energy [m2.s-2], 𝜀 is the turbulence 
dissipation rate [m2.s-3], 𝑢∗ is the friction velocity [m.s-1], 𝜅 is the von Kármán constant [-] taken to 0.41, 𝑧 
is the altitude [m], 𝑧0 is the roughness height [m] taken as 0.5 m to stand for built-up areas (Hahmann et 
al., 2015; Troen and Petersen, 1989) and 𝐶µ is a CFD constant [-] taken as 0.085. 

Emissivity (ε), thermal conductivity (κ) and thermal diffusivity (α) of the wall boundaries were set 
according to recommended values given in the literature (Bekkouche et al., 2016; Florides et al., 2002).  
The corresponding values are given in Table 1. 
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Table 1. Thermal properties of surface materials considered in the numerical model. 

Type of surface Ground surfaces Wall surface 

ε [-] 0.95 0.95 

κ [W.m−1·K−1] 0.93 0.89 

α [m².s-1] 5.8×10-7 5.6×10-7 

 

Traffic exhaust emissions were modeled using volumetric pollutant sources along the roads and over one 
mesh height (0.5 m), considering emissions of each road segment. 

Lastly, simulations were performed using second order schemes for all divergent, gradients and 
Laplacians terms and were run until full convergence, leading to residuals under 10-5. 

 

2.2.4. Meteorological scenarios considered  

A total of 12 hourly meteorological scenarios was modeled, each observed in Antwerp during the month of 
August 2016. These scenarios have been chosen to cover different wind speeds and directions, as well as 
solar radiation. The details of these scenarios and their corresponding Pasquill stability classes are given 
in Table 2. These classes, originally defined by Pasquill (1961), are an empirical classification of 
atmospheric turbulence conditions based on factors such as wind speed, solar radiation, and cloud cover. 
They range from highly unstable (class A) to stable (class F) conditions, reflecting how pollutants disperse 
in the lower atmosphere. 

 

Table 2. Hourly meteorological scenarios modeled and their corresponding Pasquill stability classes. 

Scenario Date Hour 
Wind 

direction 
[°] 

Wind 
velocity at 

30 m 
[m.s-1] 

Ambient air 
temperature 

[°C] 

Total solar 
radiation 
[W.m-2] 

Relative 
humidity 

[%] 

Pasquill stability 
class* 

S1 8/17/2016 1:00 PM 98 4.2 24.8 793 48 A-B 

S2 8/18/2016 1:00 PM 118 2.1 23.5 736 51 A 

S3 8/19/2016 7:00 AM 43 1.9 16.2 133 81 B 

S4 8/19/2016 10:00 AM 19 1.8 22.0 310 65 B 

S5 8/20/2016 2:00 PM 325 6.5 23.0 589 47 B-C 

S6 8/21/2016 2:00 PM 279 4.9 19.5 509 76 B-C 

S7 8/22/2016 11:00 AM 311 5.0 21.2 657 74 B-C 

S8 8/23/2016 3:00 PM 38 2.5 29.3 606 44 A-B 

S9 8/24/2016 2:00 PM 49 3.3 32.5 710 42 A-B 

S10 8/24/2016 6:00 PM 70 3.6 31.7 176 39 C 

S11 8/25/2016 7:00 AM 55 2.8 21.2 167 72 B 

S12 8/28/2016 1:00 PM 287 6.1 24.8 663 53 B-C 

* estimated based on wind velocity and total solar radiation according to (El-Ouartassy et al., 2022). 

 

In this study, two comparison metrics are employed, namely the Relative Error (𝑅𝐸) as outlined in 
equation (6), and the Normalized Absolute Error (𝑁𝐴𝐸) detailed in equation (7). While the first metric 
evaluates errors made by a numerical model in relation to observed data, the second metric facilitates a 
comparison of variations between two model outcomes without presupposing superiority of one over the 
other. 
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𝑅𝐸 =  
|𝑀 − 𝑂|

𝑂
         (6) 

with 𝑀 modeled concentration value and 𝑂 the observed concentration value. 

𝑁𝐴𝐸 =  
1

𝑁
∑

|𝑀1𝑖 − 𝑀2𝑖|

(𝑀1̅̅ ̅̅ + 𝑀2̅̅ ̅̅ )/2
         (7)

𝑁

𝑖=1

 

with 𝑁 the number of data in the dataset, 𝑀1𝑖 (resp. 𝑀2𝑖) the 𝑖𝑡ℎ  concentration value modeled by the first 
(resp. the second) numerical model and 𝑀1̅̅ ̅̅  (resp. 𝑀2̅̅ ̅̅ ) the concentration values modeled by the first 
(resp. second) numerical model averaged over the whole dataset. 

 

3. Results 

3.1. Qualitative comparison of the differences between neutral and non-neutral simulation outcomes 

As a first step of comparison, results obtained using the neutral and non-neutral models were firstly 
compared qualitatively at human height (1.5 m).  

Figure 3 illustrates the outcomes achieved using the two modeling approaches for a particularly warm 
day corresponding to scenario S9 (24 August 2016, 2:00 PM). According to Figure 3 (B), and as a result of 
the wall heat flux induced by the solar radiation depicted in Figure 3 (A), high overheating (i.e., 
temperature difference between isothermal and non-isothermal results) of around 10 K and up to 20 K 
can be observed in some areas. When juxtaposing these findings with the wind velocity magnitude and 
their corresponding vortices depicted in Figure 3 (C1), it appears that heightened overheating 
predominantly occurs in regions characterized by air recirculation, and particularly at lower velocities. 
The relationship between air movements and temperatures is reciprocal, just as air movements influence 
temperatures, temperatures in turn influence air movements through turbulence. Indeed, upon comparing 
Figure 3 (C1) to (C2), in other words, comparing the velocity results of the non-neutral and neutral 
models respectively, significant discrepancies can be observed: the non-neutral model leads to overall 
higher velocities in the whole area. This contrast is particularly noticeable in the central region of the area, 
where the non-neutral model shows velocities ranging from 3 to 5 m/s, while the neutral model indicates 
velocities ranging from 0 to 1 m/s. Additionally, recirculation patterns obtained by the two models are 
also different. As a consequence, since air pollutant dispersion is predominantly governed by convection 
and turbulent diffusion, there are also significant disparities in the NO2 concentration maps which are 
observable when comparing Figure 3 (D1) and (D2). Indeed, NO2 concentration results from the non-
neutral model generally exhibit lower values (29.9 µg/m3 on average at 1.5 m height) compared with 
those from the neutral model (36.7 µg/m3 on average at 1.5 m height). More specifically, at the bottom of 
the area, concentrations exceeding 80 µg/m³ are frequently observed along the primary traffic artery and 
also at its intersection with the three southbound streets, whereas concentrations predicted by the non-
neutral model at the same locations more commonly hover around 40 µg/m³ or lower. Finally, it is 
noteworthy that the hotspots of NO2 pollution modeled by the non-neutral and neutral models differ, with 
the latter tending to identify a greater number of hotspots. 

Results from scenario S3 (19 August 2016, 7:00 AM) are additionally provided in Figure 4. This scenario 
is the extreme opposite from scenario S9 presenting distinct meteorological conditions characterized by 
significantly reduced solar radiation levels and lower solar elevation, resulting in an ambient air 
temperature twice as low. The input wind velocity for this scenario is approximately half that of the 
previous one, with no significant difference in wind direction. Consequently, and as depicted in Figure 4 
(A), the modeled wall heat flux is reduced by a factor of ten in this scenario compared to the previous 
scenario resulting in maximum overheating of 5 K, but more commonly observed overheating of 1 K as 
indicated in Figure 4 (B). According to Figure 4 (C1) and (C2), even such minor temperature fluctuations 
result in disparities between the wind velocities modeled by the neutral and non-neutral models, though 
to a significantly lesser degree than observed previously. Nonetheless, the recirculation patterns remain 
unchanged. Consequently, while still discernible, the discrepancies in NO2 concentrations between the two 
models are less pronounced according to Figure 4 (D1) and (D2). Lastly, the predicted hotspots of NO2 
concentrations remain consistent. 
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Figure 3. Numerical results for scenario S9 (24 August 2016, 2:00 PM) with (A) 3D wall heat flux 
(radiative model), (B) overheating at 1.5m height (non-neutral model), (C1) wind velocity at 1.5 m (non-

neutral model), (C2) wind velocity at 1.5 m (neutral model), (D1) NO₂ concentration at 1.5 m (non-
neutral model) and (D2) NO₂ concentration at 1.5 m (neutral model). 
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Figure 4. Numerical results for scenario S3 (19 August 2016, 7:00 AM) with (A) 3D wall heat flux 
(radiative model), (B) overheating at 1.5m height (non-neutral model), (C1) wind velocity at 1.5 m (non-

neutral model), (C2) wind velocity at 1.5 m (neutral model), (D1) NO₂ concentration at 1.5 m (non-
neutral model) and (D2) NO₂ concentration at 1.5 m (neutral model). 
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3.2. Quantitative comparison of the variations between modeled NO2 concentrations 

As a second step of comparison, variations between NO2 concentrations modeled by the neutral and non-
neutral models as a function of the scenario considered were assessed using the 𝑁𝐴𝐸 metric. The 
corresponding results are gathered in Table 3.  

 

Table 3. Normalized Absolute Errors (𝑁𝐴𝐸) between neutral and non-neutral models depending on the 
scenario considered. 

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

NAE [%] 33% 32% 10% 17% 28% 30% 31% 29% 29% 10% 8% 32% 

 

Based on these findings, significant discrepancies are evident between the two models, with 𝑁𝐴𝐸s ranging 
from 8% to 32% across the different modeled scenarios. Specifically, five scenarios exhibit 𝑁𝐴𝐸𝑠 of 30% 
or more, while three scenarios display 𝑁𝐴𝐸𝑠 of 10% or less, resulting in an average 𝑁𝐴𝐸 of 24% across all 
the modeled scenarios (it is essential to note that the 𝑁𝐴𝐸 metric stands for averaged variations which 
conceal greater disparities at specific spatial points, as discussed in the previous section). These 
differences in 𝑁𝐴𝐸 results should be considered in light of the earlier observations. Indeed, high 
variations in modeled concentrations have been observed for scenario S9, leading to 𝑁𝐴𝐸 = 29%, while 
lower variations were observed for scenario S3, leading to 𝑁𝐴𝐸 = 10%. In addition, eight scenarios result 
in discrepancies exceeding 25 % (S1, S2, S5, S6, S7, S8, S9 and S12), while four scenarios yield 
discrepancies below 20 % (S3, S4, S10 and S11), with the majority of the latter under 10%. A 
comprehensive analysis of the underlying causes of these discrepancies is presented in Section 3.4. 

Based on these results, the two numerical models lead therefore to significant differences in predicting 
hourly NO2 concentration for all the meteorological conditions considered in this study.  

 

3.3. Comparison of the modeled NO2 concentrations with the air quality station data 

Theoretically, the non-neutral model is expected to be more precise than the neutral model, as it accounts 
for the influence of thermal exchanges in the air on wind speed fields and, consequently, on concentration 
fields. To provide information on this subject, modeled NO2 concentrations from both models were 
extracted at the location of the air quality (AQ) station for each simulated scenario. Errors between 
observed and modeled concentrations were then calculated using the relative error (𝑅𝐸) metric, with the 
results introduced in Figure 5. 𝑅𝐸𝑠 between observed concentrations and background concentrations are 
also depicted in this figure to emphasize the contribution of the numerical models compared to only 
considering background concentrations (i.e., hourly NO2 concentrations obtained using the RIO model 
solely, see Section 2.1). 

According to Figure 5, the non-neutral model consistently yields lower 𝑅𝐸𝑠 compared to only considering 
background concentrations. This observation does not hold for the neutral model, which, in some 
scenarios (S6 and S7), yields equivalent results to the background concentrations or slightly worse 
(scenario S5). When comparing the neutral and non-neutral models, the latter performs better in the 
majority of scenarios (S1, S3, S5, S6, S7, S9, S10, S11, S12), is equivalent to the neutral model, or, at least, 
not significantly different in two scenarios (S4 and S8), and performs worse in one scenario (S2). 

Overall, 𝑅𝐸𝑠 range from 15% to 68% when only considering background concentrations, from 13% to 
65% when using the neutral model, and from 6% to 67% when using the non-neutral model. While the 
maximal errors are of the same order of magnitude across all three cases, the non-neutral model achieves 
the lowest minimal error. On average, the non-neutral model outperforms the neutral model, which in 
turn outperforms the background concentration, with average 𝑅𝐸𝑠 of 21%, 40%, and 48%, respectively. 

Lastly, it is noteworthy that for several scenarios (S1, S5, S7, S9 and S12), the non-neutral model 
outperforms the neutral one by at least a factor of two, and up to eight times better for scenario S12. With 
a defined error acceptability threshold of 50% in line with the European air quality directive for hourly air 
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quality modeling (EU, 2008), the non-neutral model experienced a single failure, whereas the neutral 
model encountered five failures, including the sole scenario failed by the non-neutral model. 

 

 

Figure 5. Comparison of Relative Errors (RE) between observed NO2 concentrations at the air quality 
station and the predicted values from different models (background concentration alone, neutral model, 

and non-neutral model) depending on the meteorological scenario considered. 

 

3.4. Scenarios clustering using unsupervised K-means machine learning 

As a final analysis, the twelve meteorological scenarios considered in this study were analyzed to 
determine whether it was possible to explain why the non-neutral model performs very well in some 
scenarios while yielding equivalent results to the neutral one in others.  

A straightforward comparison of the meteorological conditions for each scenario does not offer clear 
explanations. While the non-neutral model can perform well under both high and low solar radiation, 
wind velocities and directions, etc., indicating its versatility across various conditions, significant 
discrepancies also arise in results under similar meteorological conditions. Hence, an unsupervised 
clustering approach was employed to identify clusters of scenarios. The K-means algorithm was used for 
this purpose, considering all the parameters available in Table 2. Although parameters such as 
temperature, time of day, and atmospheric stability were initially also included, their influence on the 
clustering was less pronounced. This can be attributed to their indirect correlation with solar radiation 
and wind conditions, which ultimately emerged as the more dominant factors distinguishing the clusters. 
The results reveal the delineation of three clusters primarily influenced by solar radiation, wind velocity, 
and wind direction information. The results of the clustering based on these three variables are depicted 
in Figure 6 (A), while Figures 6 (B), (C), and (D) present the projections onto each individual plane for 
enhanced clarity. 
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Figure 6. K-means clustering results with (A) 3D visualization of clusters based on wind velocity, wind 
direction, and solar radiation, (B) 2D view in the wind direction/wind velocity plane, (C) 2D view in the 

solar radiation/wind velocity plane, and (D) 2D view in the solar radiation/wind direction plane. 

 

According to Figure 6, the three clusters of scenarios can be summarized as follows: 

• Cluster 1: Characterized by low wind velocities (ranging from 2 to 4 m/s at 30 m height), high 
solar radiation (ranging from 600 to 800 W/m²), and wind directions between 0 and 150°. The 
Pasquill stability classes of the included scenarios are A and A-B. 
 

• Cluster 2: Defined by high wind velocities (ranging from 5 to 7 m/s at 30 m height), relatively high 
solar radiation (ranging from 500 to 700 W/m²), and wind directions between 250° and 360°. 
The Pasquill stability classes of the included scenarios are B-C. 
 

• Cluster 3: Identified by low wind velocities (ranging from 1 to 4 m/s at 30 m height), low solar 
radiation (ranging from 100 to 300 W/m²), and wind directions between 0° and 100°. The 
Pasquill stability classes of the included scenarios are B and C. 
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With this new information, 𝑁𝐴𝐸𝑠 and 𝑅𝐸𝑠 previously obtained were averaged based on the respective 
cluster of each scenario. The corresponding results are compiled in Table 4. These results provide some 
useful new information.  

 

Table 4. Statistical parameters (𝑁𝐴𝐸, 𝑅𝐸, and factor of improvement) averaged across scenario clusters. 

Cluster 

Averaged 𝑁𝐴𝐸 
between neutral 
and non-neutral 

models [%] 

𝐴𝑣𝑟𝑒𝑔𝑎𝑒𝑑 𝑅𝐸 compared to AQ station 
[%] 

Factor of improvement using the 
non-neutral model [-] 

Background 
concentrati

on 

Neutra
l model 

Non-neutral 
model 

Over background 
concentration 

Over neutral 
model 

1 31% 58% 47% 28% 2.1 1.7 

2 30% 54% 54% 18% 3.0 3.0 

3 11% 33% 19% 17% 1.9 1.1 

All 24% 48% 40% 21% 2.3 1.9 

 

 

Firstly, averaged 𝑁𝐴𝐸𝑠 exhibit a similar order of magnitude between clusters 1 and 2 (around 30%) but 
are three times lower (11%) for cluster 3. This outcome is expected, as cluster 3 includes scenarios with 
low solar radiation, resulting in reduced thermal effects. Similar observations hold true for 𝑅𝐸𝑠 obtained 
by both the neutral and non-neutral models, yielding respective values of 19% and 17%. 

When comparing 𝑅𝐸𝑠 between clusters 1 and 2, it becomes clear that the non-neutral model significantly 
outperforms the neutral model within cluster 2, while still demonstrating superiority within cluster 1 with 
a lesser extent. Indeed, as depicted in Figure 5, the non-neutral model consistently outperforms the 
neutral one across all four scenarios included in cluster 2 (scenarios S5, S6, S7, and S12). However, the 
situation is more varied within cluster 1, where the non-neutral model performs better for scenarios S1 
and S9, but worse for scenarios S2 and S8. 

As a final result indicated in Table 4, the mean factor of improvement by the non-neutral model over 
directly considering background concentration is 2.3, while it ranges from at least 1.1 (cluster 3) to up to 
3.0 (cluster 2) over the neutral model. Across all scenarios considered, the factor of improvement 
achieved by the non-neutral model over the neutral model amounts to 1.9, proving its superiority in 
accurately modeling air pollution dispersion under unstable thermal conditions. 

 

4. Discussion 

According to the findings of this study, a non-isothermal, solar radiation-included CFD model yields more 
accurate results than a conventional isothermal CFD approach when modeling real hourly daytime 
meteorological scenarios under unstable atmospheric conditions. Recent research (Martín et al., 2024) 
has shown that using only neutral boundary layer conditions could provide good results for assessing 
long-term pollutant concentrations such as monthly concentrations. However, these results were obtained 
from only one full-scale experiment, and further evidence is needed to validate their broader applicability. 
Additionally, neglecting thermal effects and solar radiation in the model assumptions can lead to 
erroneous predictions of pollution hotspots and concentration levels for specific wind conditions. This 
statement should nonetheless be approached with caution. Although using a non-neutral model to 
simulate unstable hourly scenarios is expected to improve the prediction of long-term average 
concentrations, as indicated by this study's results, this type of model is more complex to parameterize 
and operate. Additionally, due to the inclusion of thermal effects induced by solar radiation, the known 
inverse relationship between the model's input velocity and resulting concentrations valid under a neutral 
boundary layer assumption (Reiminger et al., 2020), may not be maintained, particularly at low wind 
speeds where canopy turbulence is no longer dominated by shear turbulence. This may necessitate 
modeling multiple wind velocities and solar radiation scenarios for given wind directions, a requirement 
that is absent under neutral boundary layer conditions. Additionally, stable cases that were not assessed 
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in this study should also be considered. In particular, evaluating the maintenance and limits of stable 
boundary layer conditions when solar radiation is present would provide further insight into the interplay 
between thermal effects and turbulence. While stable stratification may initially reduce turbulent mixing, 
the introduction of solar radiation can modify vertical temperature profiles and influence buoyancy-
driven flows. Determining the thresholds at which stable conditions break down or transition to other 
regimes would enhance our understanding of pollutant dispersion under varying atmospheric conditions. 
Furthermore, it is important to highlight that the comparison among the models evaluated in this study 
was constrained by the availability of data solely from a singular air quality measurement station 
operated by the Flemish Air Quality Agency. While this station provided valuable insights, the availability 
of additional data, especially with regards to spatialization, would have been optimal. This challenge is 
compounded by the inherent characteristics of such stations, which, due to their costly infrastructure, are 
limited in number and generally located far from each other, presenting an important obstacle for micro-
scale model validation, especially CFD models, known for their resource-intensive nature in terms of both 
power and time. Consequently, it is recommended to replicate this research across diverse areas equipped 
with reliable and precise air quality measurement stations. Doing so would not only support the current 
findings but also shed light on the discrepancies observed between neutral and non-neutral models. 

It is worth mentioning that certain phenomena, such as the influence of vegetation and traffic on wind 
velocity and turbulence at the road level, were not considered in this study. Including these factors, which 
have demonstrated their relevance in neutral cases, could be evaluated and compared with the current 
findings. This approach would help determine whether and to what extent the current results could be 
enhanced, especially in scenarios where the non-neutral model did not show significant improvements 
over the neutral one. This implies that other unaccounted phenomena may have influenced the results, 
highlighting the importance of identifying and understanding these factors to better comprehend the 
complexity behind the variations observed between neutral and non-neutral models. 

Lastly, an aspect that warrants attention is the assumption of isotropic turbulent diffusion. Although this 
simplification is commonly made for computational convenience, it may not fully reflect the complexity of 
real-world flow dynamics, particularly under conditions influenced by solar radiation. Positive buoyancy 
effects can create vertical temperature gradients that, in turn, affect turbulence characteristics and 
potentially result in anisotropic pollutant dispersion. Such differences suggest that isotropic turbulence 
models might not fully capture the nuanced influence of buoyancy-driven flows. Future research could 
consider more advanced turbulence closure models or incorporate anisotropic diffusion terms to enhance 
the fidelity of urban air quality predictions. 

 

5. Conclusion 

This research aimed to evaluate the advantages of incorporating non-isothermal conditions and solar 
radiation into Computational Fluid Dynamics (CFD) models for air pollution dispersion in real urban 
environments. Twelve unstable hourly meteorological scenarios were modeled in a neighborhood of 
Antwerp, Belgium, using both a conventional neutral CFD approach and a non-isothermal approach that 
included solar radiation. Comparing the results of an enhanced solar radiation-included model with those 
of a conventional neutral model against in-field monitored data demonstrated the improved accuracy and 
insights provided by non-neutral CFD simulations. The main findings of this study are as follows: 

(1) Variation spanning from 8% to 32% (24% on average) are observed between the NO2 
concentration maps generated by the neutral and non-neutral models, mostly due to variation in 
the modeled wind fields. These discrepancies are observed in both the identification of 
concentration hotspots and the prediction of concentration levels. 
 

(2) Non-neutral solar radiation-included CFD model outperforms the neutral CFD model on 75% of 
the hourly meteorological scenarios assessed. On the remaining scenarios, only one slightly 
advantages the neutral model. 
 

(3) Model errors, in comparison to air quality station data, range from 13% to 65% (averaging at 
40%) for the neutral model and from 6% to 67% (averaging at 21%) for the non-neutral model. 
Overall, the non-neutral model demonstrates superior performance compared to the neutral 
model. 

https://doi.org/10.1016/j.apr.2024.102383


https://doi.org/10.1016/j.apr.2024.102383 

17 / 20 

(4) Both models exhibit comparable performance in scenarios characterized by low wind speeds (< 4 
m/s at 10m height) and low solar radiation (< 300 W/m²). The non-neutral model nevertheless 
demonstrates superior performance overall, particularly in conditions of higher solar radiation 
and variable wind speeds. 

Lastly, our results highlight that incorporating solar radiation into micro-scale CFD air quality modeling is 
beneficial, suggesting promising avenues for real-world urban applications.. The integration of solar 
radiation-included CFD simulations notably represents a significant advancement in urban air quality 
modeling, with potential implications for enhancing air quality management strategies and informing 
urban planning decisions. Further work could be pursued on this basis to consolidate the current results 
or advance them further by considering other complex phenomena encountered in urban environments, 
for instance focusing on the additional impact of vegetation or vehicle induced turbulence. 
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