

Pollution atmosphérique en milieu urbain

Novembre 2024

Dr.-Ing. Nicolas Reiminger nreiminger@air-d.fr www.reiminger.fr

INTERVENANT

2014 - 2017: ENGEES (Promotion Paris), voie Hydraulique Urbaine

2017 – 2020 : Doctorat à l'Université de Strasbourg, spécialité Mécanique des fluides

Université

Depuis 2020 : Chef de projets modélisations numériques

Depuis 2021 : Enseignant vacataires (Pollution atmosphérique et Intelligence artificielle pour l'environnement)

Depuis 2022 : Chercheur associé

Depuis 2022 : Membre du groupe de travail « modélisation micro-échelle » du forum FAIRMODE

OBJECTIFS

Appréhender et comprendre la problématique de la qualité de l'air en milieu urbain

Connaître les principaux polluants atmosphériques d'intérêt en milieu urbain, leurs caractéristiques et leur réglementation

Connaître les principaux facteurs influençant la qualité de l'air en ville, l'évolution de ceuxci dans le temps et les mesures prises pour améliorer la qualité de l'air

Savoir comment étudier la qualité de l'air en zone urbaine, et connaître les avantages et inconvénients des différentes méthodes

SOMMAIRE

Pollution atmosphérique : Passé, présent, futur

Notions de physique et chimie de l'atmosphère et de ses polluants

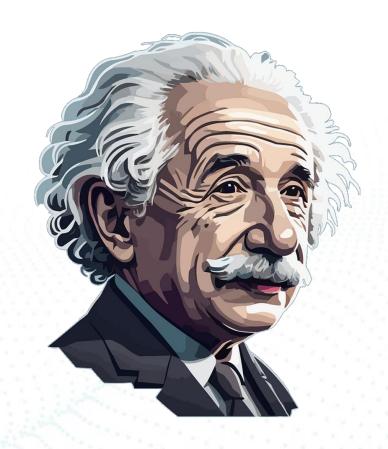
La pollution de l'air à l'échelle locale : Exemple du Grand Est et de l'EMS

Améliorer la qualité de l'air : exemples d'actions et mesures

Etudier la qualité de l'air

Exemple d'étude de la qualité de l'air

R&D: Optimiser la qualité de l'air



CITATION CÉLÈBRE

« Le véritable signe de l'intelligence, ce n'est pas la connaissance, mais l'imagination. »

Dr. Albert Einstein

POLLUTION ATMOSPHÉRIQUE:

PASSÉ, PRÉSENT ET FUTUR

Qu'est ce qu'un polluant?

Un polluant est un altéragène biologique, physique ou chimique, qui au-delà d'un certain seuil, et parfois dans certaines conditions (potentialisation), développe des impacts négatifs sur tout ou partie d'un écosystème ou de l'environnement en général.

Ceci revient à définir le polluant comme un contaminant d'un ou plusieurs compartiments des écosystèmes (air, eau, sol) et/ou d'un organisme (qui peut être l'être humain) ou ayant une incidence sur l'écosystème, audelà d'un seuil ou norme.

D'après le Dictionnaire du vocabulaire normalisé de l'Environnement de l'AFNOR en France

Polluant biologique

Polluant physique

Polluant chimique

LA POLLUTION ATMOSPHÉRIQUE, UN PROBLÈME MILLÉNAIRE

Traces de noircissements des poumons retrouvées sur des corps en Egypte, au Pérou et en Angleterre durant les premières civilisations.

En 400 av. J.-C., Hippocrate mentionna l'importance de la qualité de l'air et de l'eau dans son traité intitulé « Airs, Waters, Places ».

Au XIII^e siècle, le roi Edward I^{er} menaça les Londoniens qui brulaient le charbon de mer afin de préserver la qualité de l'air.

La problématique devint d'autant plus grande avec la révolution industrielle qui entraina une production plus importante de polluants avec les industries et les usines.

Le grand smog de Londres qui eut lieu entre le 5 et 9 décembre 1952 est un des derniers exemples d'événement majeur de pollution de l'air d'avant le XXI^e siècle. Il entraina la mort de près de 4 000 personnes.

Mosley, S. Environmental history of air pollution and protection. In Environmental History. Springer International Publishing, 2014, pp. 143–169.

Le grand smog de Londres (https://www.theverge.com/)

QUELQUES ACTUALITÉS

Smog indo-pakistanais: Octobre/novembre 2024

Multan, Pakistan : $[PM2,5] = 947 \mu g/m^3$

LES CHIFFRES AUJOURD'HUI

Dans le monde¹

En 2016, approximativement 8 millions de décès prématurés des suites à une exposition à la pollution de l'air (7,6 % de tous les décès).

En particulier, 4,2 millions causés par une mauvaise qualité de l'air extérieur et 3,8 par une mauvaise qualité de l'air intérieur.

En Europe²

Approximativement 500 000 décès prématurés, dont 85% liés aux PM2,5, 14% aux NO₂ et 3% à l'O₃.

En France³

Approximativement 48 000 décès prématurés liés uniquement à une exposition aux PM2,5.

Autres chiffres

En 2018, 50 % de la population mondiale vit en zone urbaine (76 % en Europe), et atteindra 68 % en 2050 d'après les prévisions⁴.

9 personnes sur 10 vivent dans des lieux où les concentrations en polluants de l'air excèdent les niveaux acceptables¹.

L'espérance de vie peut baisser de 15 mois en moyenne jusqu'à 30 ans en milieu urbain contre environ 9 mois en moyenne en milieu rural³.

^{1 :} d'après l'Organisation mondiale de la sante

²: d'après l'Agence européenne pour la santé

³ : d'après Santé publique France

^{4 :} d'après l'Organisation des nations unis

LA RÉGLEMENTATION FACE À CETTE PROBLÉMATIQUE

En Europe

Directive 2008/50/CE du Parlement européen et du Conseil du 21 mai 2008 concernant la qualité de l'air ambiant et un air pur pour l'Europe

→ Transposée en France par le décret n° 2010-1250 du 21 octobre 2010 relatif à la qualité de l'air

Dans le monde

Rapport OMS 2005 : « Lignes directrices OMS relatives à la qualité de l'air : particules, ozone, dioxyde d'azote et dioxyde de soufre »

Révision OMS 2017 : « Évolution des valeurs guides de l'OMS sur la qualité de l'air : le passé, le présent et l'avenir »

Directive 2008/50/CE	NO2	PM10	PM2,5
Valeur limite (moyenne annuelle)	40 μg/m3	40 μg/m3	25 μg/m3
Valeur limite (moyenne journalière)	-	50 μg/m3 (ne pas dépasser plus de 35 fois par an)	-
Valeur limite (moyenne horaire)	200 μg/m3 (ne pas dépasser plus de 18 fois par an)	-	-
Objectif de qualité (en moyenne annuelle)	40 μg/m3	30 μg/m3	10 μg/m3

Réglementaire

OMS	NO2	PM10	PM2,5
Moyenne annuelle	40 μg/m3	20 μg/m3	10 μg/m3
Moyenne journalière	1	50 μg/m3 (maximum 3 jours par an)	25 μg/m3 (maximum 3 jours par an)
Moyenne horaire	200 μg/m3	-	-

EVOLUTION DES VALEURS OMS

Avant 2021	NO2	PM10	PM2,5		
Moyenne annuelle	40 μg/m3	20 μg/m3	10 μg/m3		
Moyenne journalière	_		25 μg/m3 (maximum 3 jours par an)		
Moyenne horaire	200 μg/m3	-	-		

Mise à jour en 2021

World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.

https://apps.who.int/iris/handle/10665/345329.

Licence: CC BY-NC-SA 3.0 IGO

Après 2021 NO2		PM10	PM2,5
Moyenne annuelle	10 μg/m3	15 μg/m3	5 μg/m3
Moyenne journalière	25 μg/m3	45 μg/m3 (maximum 3 jours par an)	15 μg/m3 (maximum 3 jours par an)

OBJECTIFS INTERMÉDIAIRES OMS

Avant 2021	NO2	PM10	PM2,5		
Moyenne annuelle	40 μg/m3	20 μg/m3	10 μg/m3		
Moyenne journalière	-	50 μg/m3 (maximum 3 jours par an)	25 μg/m3 (maximum 3 jours par an)		
Moyenne horaire	200 μg/m3	-	-		

Après 2021	NO2 PM10		PM2,5
Moyenne annuelle	10 μg/m3	15 μg/m3	5 μg/m3
Moyonno		45 μg/m3	15 μg/m3
Moyenne journalière	25 μg/m3	(maximum 3 jours par an)	(maximum 3 jours par an)

Pollutant	Averaging time		Interim target					
		1	2	3	4	•		
PM _{2.5} , µg/m³	Annual	35	25	15	10	5		
	24-hour ^a	75	50	37.5	25	15		
PM ₁₀ , µg/m³	Annual	70	50	30	20	15		
	24-hour ^a	150	100	75	50	45		
O ₃ , µg/m³	Peak season ^b	100	70	-	-	60		
	8-hour ^a	160	120	-	-	100		
NO ₂ , µg/m³	Annual	40	30	20	-	10		
	24-hour ^a	120	50	-	-	25		
SO ₂ , µg/m³	24-hour ^a	125	50	-	-	40		
CO, mg/m ³	24-hour ^a	7	_	_	_	4		

^a 99th percentile (i.e. 3-4 exceedance days per year).

World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.

^b Average of daily maximum 8-hour mean O_3 concentration in the six consecutive months with the highest six-month running-average O_3 concentration.

OBJECTIFS INTERMÉDIAIRES OMS, EXPLICATIONS

Table 3.1. Recommended annual AQG level and interim targets for PM_{2.5}

Recommendation	PM _{2.5} (μg/m³)
Interim target 1	35
Interim target 2	25
Interim target 3	15
Interim target 4	10
AQG level	5

If mortality in a population exposed to $PM_{2.5}$ at the AQG level is arbitrarily set to 100, then it will be 124, 116, 108 and 104, respectively, in populations exposed to $PM_{2.5}$ at interim target 1, 2, 3 and 4 levels. These projections are based on the linear HR of 1.08 per $10^{-}\mu g/m^3$ increase in $PM_{2.5}$ for all non-accidental mortality reported in the systematic review. At higher concentrations, the CRF may no longer be linear, which would change the numbers in this example.

World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.

Exemple de la valeur cible 1

[PM2,5] : 5 $\mu g/m^3 \rightarrow 35 \mu g/m^3$

Mortalité : 100 → 124

+ 24%

EVOLUTION DES VALEURS UE

Les nouvelles normes de qualité de l'air pour la protection de la santé humaine fixées par la nouvelle directive révisant la directive 2008/50/CE et comparaison avec les valeurs guides de l'OMS (2021)

Polluant	Périodicité	Type de norme	Norme en vigueur		Norme révisée adoptée pour 2030	Dépassements autorisés	Valeurs guides de l'OMS (2021
DM	Annuelle	Valeur limite	25 μg/m³	2	10 μg/m3	÷	5 μg/m3
PM _{2,5}	24h	Valeur limite	pas de norme	Ψ	25 μg/m3	18 fois/an	15 μg/m3
DM	Annuelle	Valeur limite	40 μg/m³	7	20 μg/m3	-	15 μg/m3
PM ₁₀	24h	Valeur limite	50 μg/m ³	7	45 μg/m3	18 fois/an	45 μg/m3
0	Moy. jour. max. sur 8h	Valeur cible	120 μg/m3	→	120 μg/m3	18 j/an (moy. sur 3 ans)	100 µg/m3
03	Moy. jour. max. sur 8h	Objectif à long terme	120 μg/m3	7	100 μg/m3**	3 j./an	100 μg/1113
	Annuelle	Valeur limite	40 μg/m3	И	20 μg/m3	-	10 μg/m3
NO ₂	24h	Valeur limite	pas de norme	4	50 μg/m3	18 fois/an	25 μg/m3
	1h	Valeur limite	200 μg/m3	>	200 μg/m3	3 fois/an	-
	Annuelle	Valeur limite	pas de norme	4	20 μg/m3	-	=
SO ₂	24h	Valeur limite	125 μg/m3	N	50 μg/m3	18 fois/an	40 μg/m3
	1h	Valeur limite	350 μg/m3	→	350 μg/m3	3 fois/an	-
	24h	Valeur limite	pas de norme	4	4 μg/m3	18 fois/an	4 μg/m3
СО	Moy. jour. max. sur 8h	Valeur limite	10 μg/m3	>	10 μg/m3	-	2
Benzène	Annuelle	Valeur limite	5 μg/m3	Z	3,4 μg/m3		+
Plomb	Annuelle	Valeur limite	0,5 μg/m3*	>	0,5 μg/m3	ē.	-
Arsenic	Annuelle	Valeur limite	6 ng/m3*	→	6 ng/m3	- 2	-2
Cadmium	Annuelle	Valeur limite	5 ng/m3*	→	5 ng/m3	-	÷:
Nickel	Annuelle	Valeur limite	20 ng/m3*	→	20 ng/m3	÷	=
BaP	Annuelle	Valeur limite	1 ng/m3*	→	1 ng/m3		-

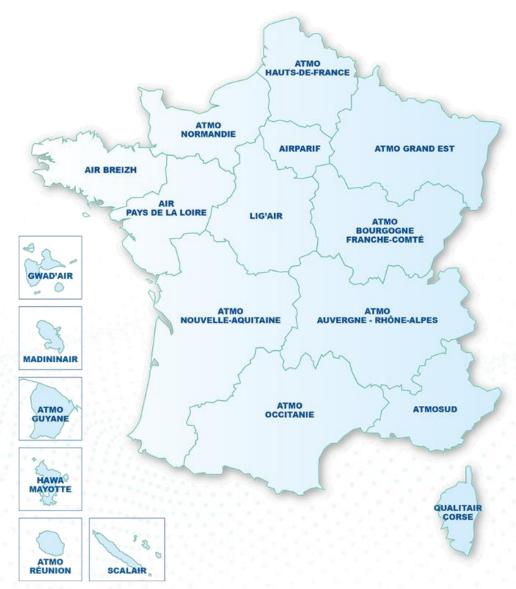
https://www.citepa.org/fr/2024 04 a04/

ET EN FRANCE?

AASQA : Autorité Agréée de Surveillance de la Qualité de l'Air Le réseau ATMO ...

Leurs missions

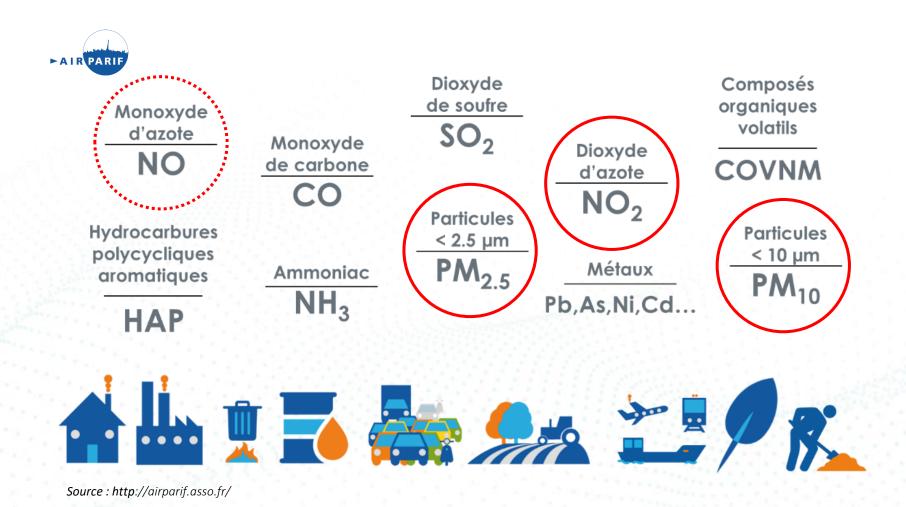
Assurer la **surveillance** réglementaire de la qualité de l'air (mesures, modélisations, inventaires)


Informer, alerter et prévenir les citoyens/médias/autorités

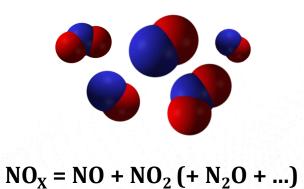
Sensibiliser les citoyens

Accompagner les différents acteurs (collectivités, associations, etc.)

Participer à l'élaboration des PPA (Plans de Protection de l'Atmosphère)

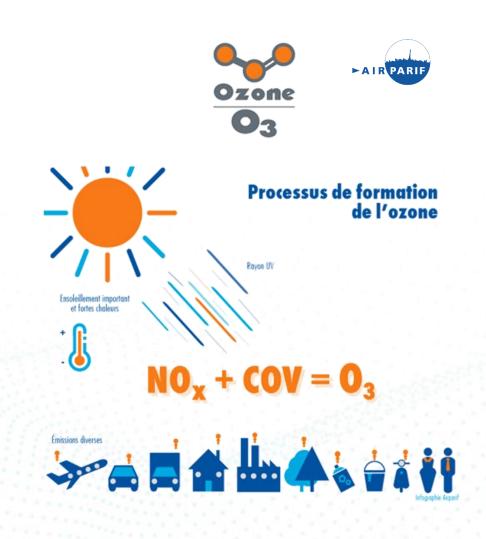


NOTIONS DE PHYSIQUE ET CHIMIE DE L'ATMOSPHÈRE ET DE SES POLLUANTS



Une problématique complexe liée à de nombreuses sources

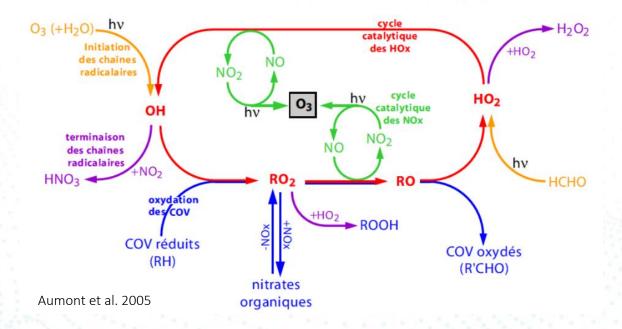
FOCUS SUR LES OXYDES D'AZOTE : PRÉSENTATION GLOBALE



Les oxydes d'azote impliqués dans les mécanismes de pollution comprennent majoritairement le monoxyde d'azote (NO) et le dioxyde d'azote (NO₂).

En partie responsable des **pluies acides** (formation d'acide nitrique dans les nuages) et entrainant des **troubles respiratoires** aux êtres vivants.

Le principal secteur émetteur est les **transports routier**, suivi du secteur résidentiel et tertiaire puis de l'industrie.


Les oxydes d'azote sont également dépendants des conditions météorologiques et de l'ensoleillement.

LA CHIMIE DES OXYDES D'AZOTE

Une chimie complexe impliquant plus de **300 espèces différentes** dans plus d'une centaine de réactions

Une méthode de calcul simplifiée, basée sur **l'équilibre photochimique** :

$$NO_2 + h. \nu \xrightarrow{J_1} NO + O$$

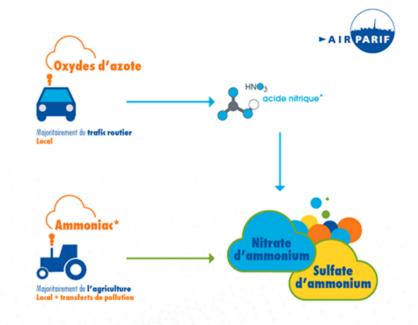
$$O + O_2 + M \xrightarrow{k_2} O_3 + M \qquad [O_3]_{PSS} = \frac{J_1 [NO_2]_{PSS}}{k_3 [NO]_{PSS}}$$

$$NO + O_3 \xrightarrow{k_3} NO_2 + O_2$$

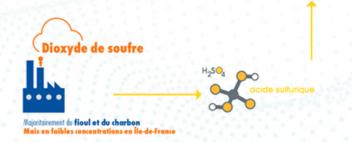
Limites : beaucoup de paramètres sont nécessaires pour calculer J_1 et k_3 (température, angle zénithal solaire...)

$$J_1 = A. e^{(-B.\sec \theta)}$$
 $k_3 = \frac{15.33}{T}. e^{\frac{-1450}{T}}$

FOCUS SUR LES PARTICULES FINES (PM)

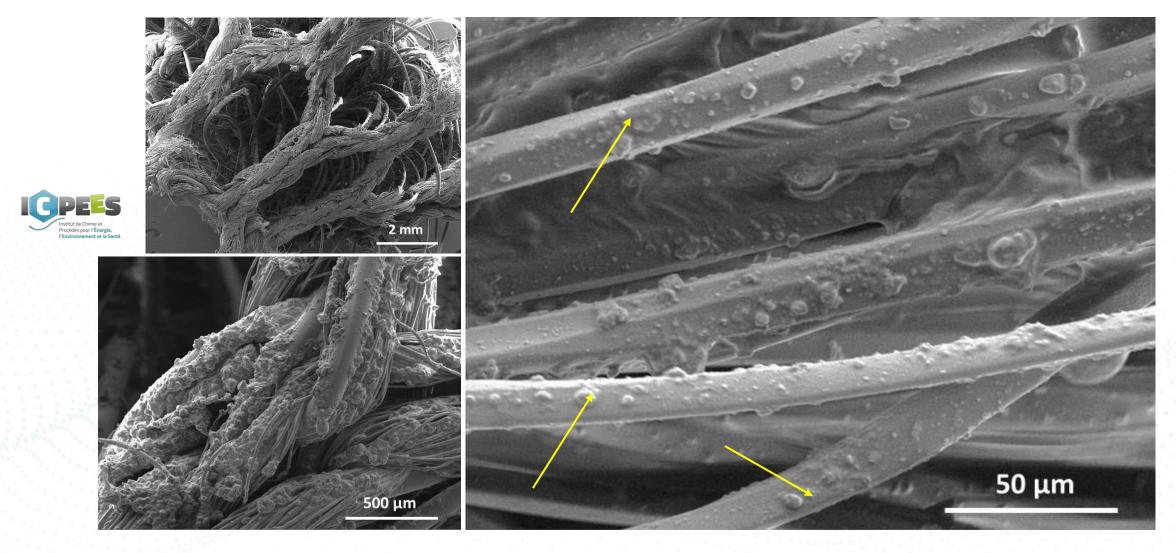

Les particules en suspension **PM10** sont des particules dont le **diamètre est** inférieur ou égal à $10 \mu m$.

Il existe également les PM2,5, PM1, PM0,1, etc...


Les particules en suspension sont d'autant plus dangereuses pour les êtres vivants que leur taille est petite (passage dans les poumons, alvéoles pulmonaires, sang...).

Particules primaires : Elles sont émises directement par les secteurs du chauffage résidentiel et tertiaire, du transport routier, de l'industrie et de l'agriculture.

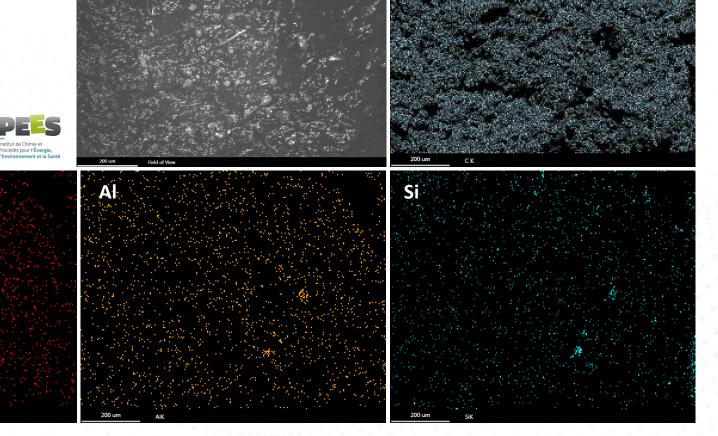
Particules secondaires : Elles peuvent également se former dans l'atmosphère à partir de la combinaison d'ammoniac (d'origine agricole) et d'oxydes d'azote (trafic routier)



^{*} composés sur lesquels des octions de réduction sont à privilégier

LES PARTICULES FINES AU MICROSCOPE ÉLECTRONIQUE À BALAYAGE (MEB)

ANALYSE DES COMPOSANTS DES PARTICULES PAR COUPLAGE MEB - EDX


Ni

MEB : Microscopie Electronique à Balayage

EDX : Energie Dispersive de rayons X

La microanalyse par EDX permet une analyse des éléments chimiques présents sur un support (C, O, Fe, Ni, etc.) ainsi que leur quantification

Permet de déterminer l'origine des PM

LE TRANSPORT DES POLLUANTS DANS L'AIR

Rappels de mécanique des fluides ...

Les équations de Navier-Stokes ...
$$\nabla . \, u = 0$$

$$\frac{\partial u}{\partial t} + u. \, (\nabla u) = -\frac{1}{\rho} \nabla p + \nu \Delta u \quad \text{bluide incompressible, absence de transfert thermiques ...}$$

... appliquées à l'air ...
$$ho \, rac{{
m D} ec V}{{
m D} t} = -
abla P -
ho \, ec g +
ho \, ec F_C + \mu \Delta ec V$$

... et la dispersion des polluants
$$\frac{\partial C}{\partial t} + \nabla \cdot (CU) - \nabla \cdot (D\nabla C) = 0$$
 Polluant inerte chimiquement, non adsorbé ...

Equations valables dans des conditions bien particulières ...

NOTIONS DE STABILITÉ ATMOSPHÉRIQUE

En fonction du gradient de température potentielle ...

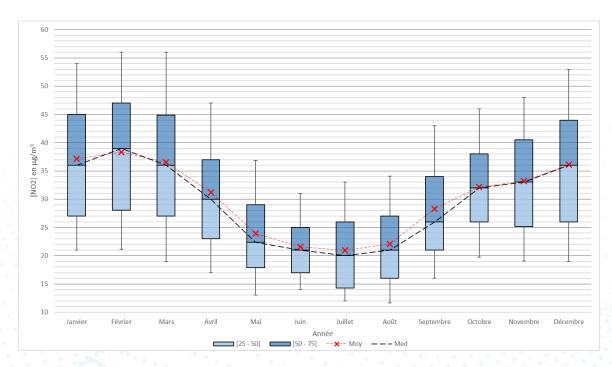
$$\partial \theta / \partial z > 0$$
 Atmosphère stable $Ri > 0$

$$\partial \theta / \partial z = 0$$
 Atmosphère neutre $Ri = 0$

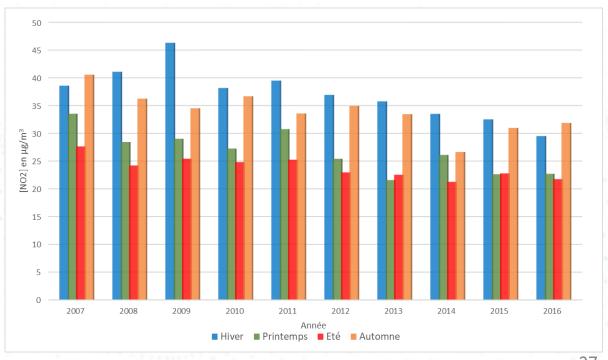
$$\partial \theta / \partial z < 0$$
 Atmosphère instable $Ri < 0$

$$\partial \theta / \partial z > 0 = \partial T / \partial z > (\partial T / \partial z)_{ad}$$

... décrit par le nombre de Richardson


$$Ri = \frac{Gr}{Re^2} = \frac{g\Delta H}{U_H^2} \frac{(T_H - T_g)}{T_{air}}$$

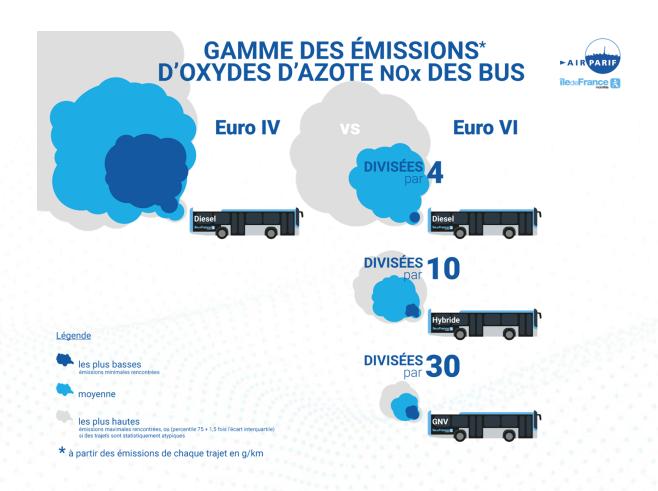
NOTIONS DE SAISONNALITÉ


Exemple d'une station de mesure à Strasbourg entre 2007 et 2016

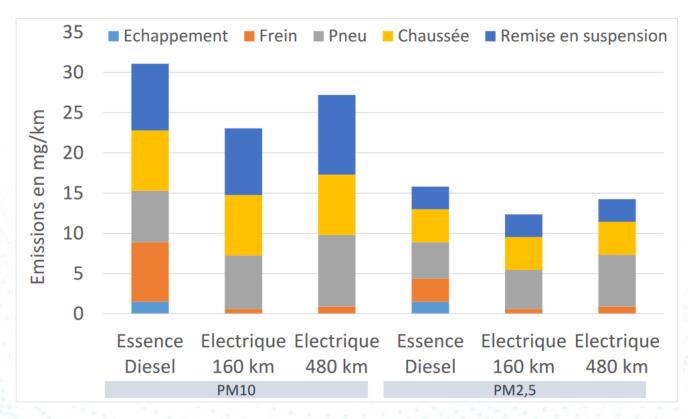
Evolution saisonnière des concentrations en dioxyde d'azote ...

... valable chaque année

Également valable pour les PM



EMISSIONS LIÉES AU TRAFIC: IMPACT DU PARC ROUTIER


Туре	Carburant	UNITE	2015	2017
VL	Tout type	Part total	73.12%	73.61%
VL	Diesel	Part VL	64.85%	63.34%
VL	Essence	Part VL	35.15%	36.66%
VUL	Tout type	Part total	16.71%	16.72%
VUL	Diesel	Part VUL	80.65%	81.77%
VUL	Essence	Part VUL	19.35%	18.23%
BUS	Tout type	Part total	0.22%	0.22%
PL	Tout type	Part total	1.96%	1.94%
PL	Diesel	Part PL	99.87%	99.97%
PL	Essence	Part PL	0.13%	0.03%
DR	Tout type	Part total	7.99%	7.51%

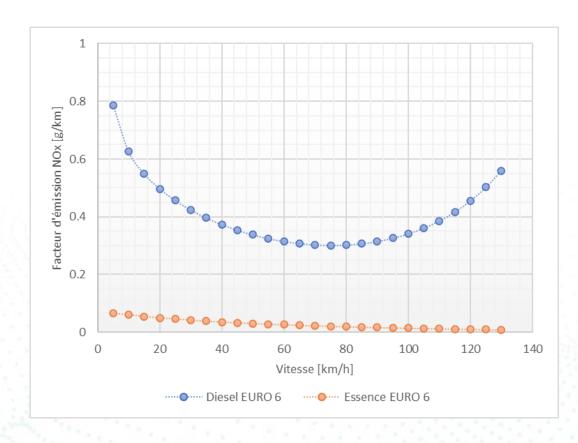
Туре	Norme	Carburant	Unité	2015	2017
VP	Euro 1 et -	Diesel	#	3%	3%
VP	Euro 2	Diesel	#	7%	4%
VP	Euro 3	Diesel	#	18%	14%
VP	Euro 4	Diesel	#	42%	39%
VP	Euro 5	Diesel	#	29%	31%
VP	Euro 6 et +	Diesel	#	1%	9%

EMISSIONS LIÉES AU TRAFIC: LE CAS PARTICULIER DES PARTICULES

Emissions des Véhicules routiers - Les particules hors échappement, ADEME, 2022

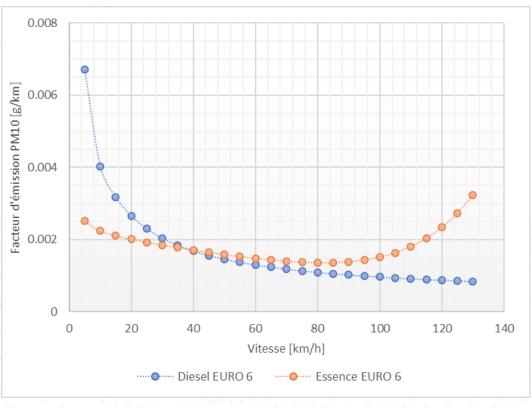
Freinage régénératif : diminution des émissions liées aux freins

Emissions en PM et **autonomies** des VE positivement **corrélés**


Plus d'émissions pneu/chaussée/remise en suspension : taille des pneus

Véhicule électrique = véhicule propre

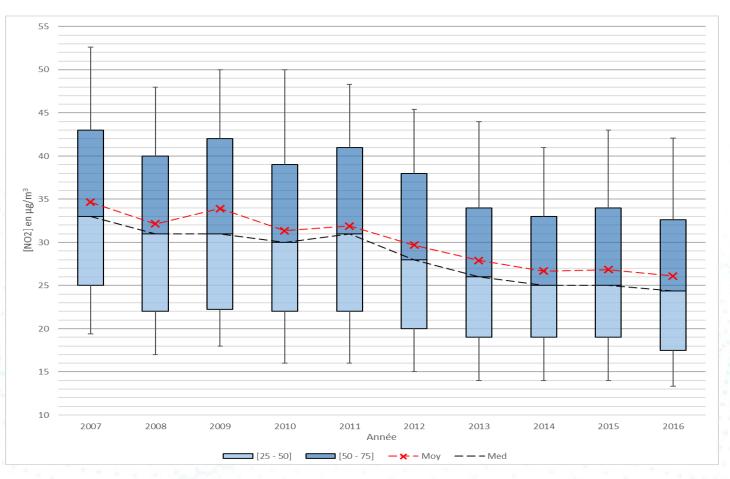
Oui, mais dans une certaine mesure ...



EMISSIONS LIÉES AU TRAFIC : COMPARAISON DES MOTORISATIONS THERMIQUES

Technologie diesel EURO 6 pour les VP plus émissive en NO_x

Technologie diesel EURO 6 pour les VP **équivalente** à essence pour les **particules**


LA POLLUTION DE L'AIR À L'ÉCHELLE LOCALE: EXEMPLE DU GRAND EST ET DE L'EMS

LA POLLUTION DE L'AIR À L'ÉCHELLE LOCALE : EMS

EVOLUTION DE LA POLLUTION ATMOSPHÉRIQUE AU COURS DES DERNIÈRES ANNÉES

Exemple d'une station de mesure à Strasbourg entre 2007 et 2016

Baisse globale de la pollution en NO₂

Baisse valable pour les autres polluants également et plus généralement au niveau du territoire Français

LA POLLUTION DE L'AIR À L'ÉCHELLE LOCALE : EMS

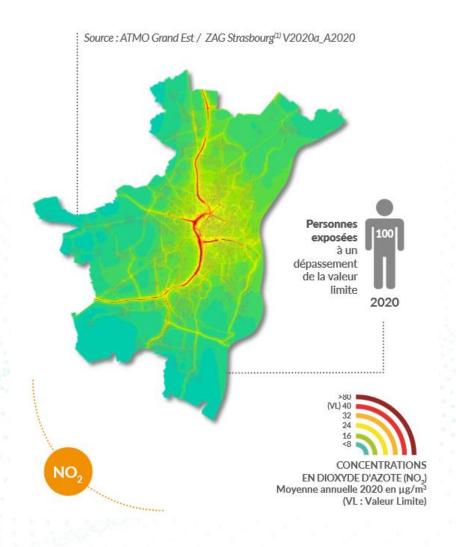
LES POLLUANTS DE L'AIR AU NIVEAU DU GRAND EST

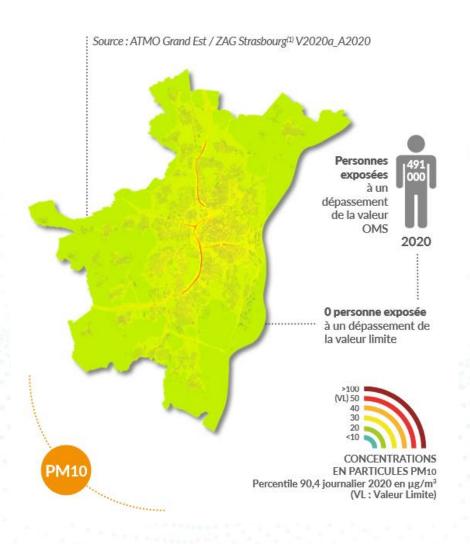
ZAS	Seuil réglementaire	Particules PM10	Particules PM2,5	Dioxyde d'azote	Ozone	Dioxyde de soufre	Monoxyde de carbone	Benzène	Benzo(a) pyrène	Plomb	Autres métaux lourds (Arsenic, Cadmium, Nickel)
	Valeur limite	•	•	•	-	•	•	•	-	•	-
Zone Agglomération	Valeur cible	-	•	-	•	-	-	-	•	-	•
de Metz	Objectif de qualité	•	•	•	•	•	-	•	-	•	-
	Ligne directrice OMS	•	•	•	•	•	-	-	-	-	-
	Seuil d'information (1)	•	-	•	•	•	-	-	-	-	-
	Seuil d'alerte ⁽¹⁾	•	-	•	•	•	-	-	-	-	-
	Valeur limite	•	•	•	-	•	•	•	-	•	-
Zone Agglomération	Valeur cible	-	•	-	•	-	-	-	•	-	•
de Nancy	Objectif de qualité	•	•	•	•	•	-	•	-	•	-
	Ligne directrice OMS	•	•	•	•	•	-	-	-	-	-
	Seuil d'information	•	-	•	•	•	-	-	-	-	-
	Seuil d'alerte	•	-	•	•	•	-	-	-	-	-
	Valeur limite	•	•	•	-	•	•	•	-	•	-
Zone Agglomération	Valeur cible	-	•	-	•	-	-	-	•	-	•
de Strasbourg	Objectif de qualité	•	•	•	•	•	-	•	-	•	-
	Ligne directrice OMS	•	•	•	•	•	-	-	-	-	-
	Seuil d'information	•	-	•	•	•	-	-	-	-	-
	Seuil d'alerte	•	-	•	•	•	-	-	-	-	-
Zone	Valeur limite	•	•	•	-	•	•	•	-	•	-
à risque	Valeur cible	-	•	-	•	-	-	-	•	-	•
de Reims (périmètre :	Objectif de qualité	•	•	•	•	•	-	•	-	•	-
ancien Reims	Ligne directrice OMS	•	•	•	•	•	-	-	-	-	-
Métropole)	Seuil d'information	•	-	•	•	•	-	-	-	-	-
	Seuil d'alerte	•	-	•	•	•	-	-	-	-	-
	Valeur limite	•	•	•	-	•	•	•	-	•	-
Zone régionale	Valeur cible	-	•	-	•	-	-	-	•	-	•
regionale	Objectif de qualité	•	•	•	•	•	-	•	-	•	-
	Ligne directrice OMS	•	•	•	•	•	-	-	-	-	-
	Seuil d'information	•	-	•	•	•	-	-	-	-	-
	Seuil d'alerte	•	-	•	•	•	-	-	-	-	-

Principaux polluants dans le Grand Est : NO₂, PM, et O₃

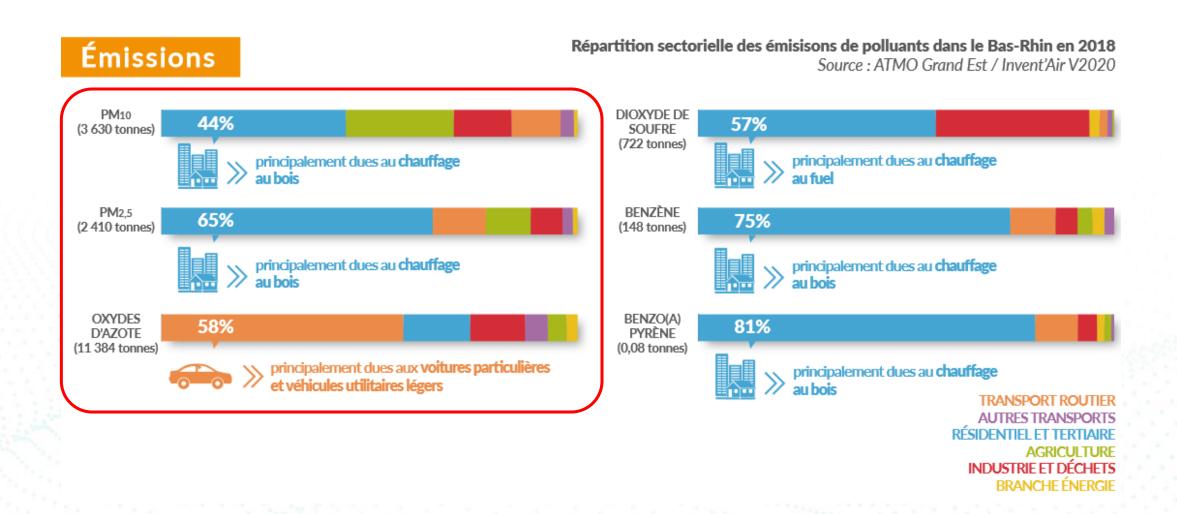
À l'échelle locale : NO₂ et PM

(1) Différent des procédures réglementaires préfectorales d'information-recommandation ou d'alerte, qui sont des pratiques et des actes administratifs pris par l'autorité préfectorale lors d'un épisode de pollution. Ces procédures sont déclenchées sur prévision d'un dépassement des seuils d'information-recommandation et/ou d'alerte, et peuvent l'être sans que ce dépassement soit constaté le lendemain, ou à l'inverse, ne pas l'être alors qu'un dépassement sera constaté le lendemain.


- Respect valeur réglementaire
- Dépassement objectif qualité / valeur cible / seuil d'information / ligne directrice OMS
- Dépassement valeur limite / seuil d'alerte
- Non évalué ou données insuffisantes pour se comparer aux seuils réglementaires.
- Il n'existe pas de valeur réglementaire

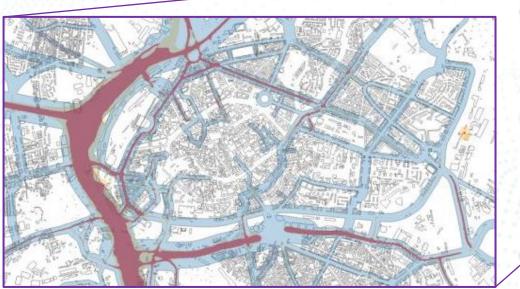

Source: http://www.atmo-grandest.eu/lair-du-grand-est-en-2018

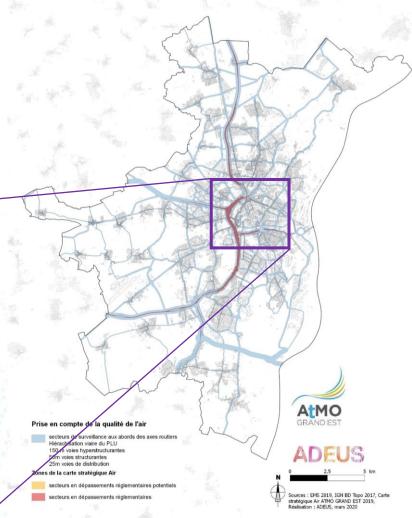
LA POLLUTION DE L'AIR À L'ÉCHELLE LOCALE : EMS



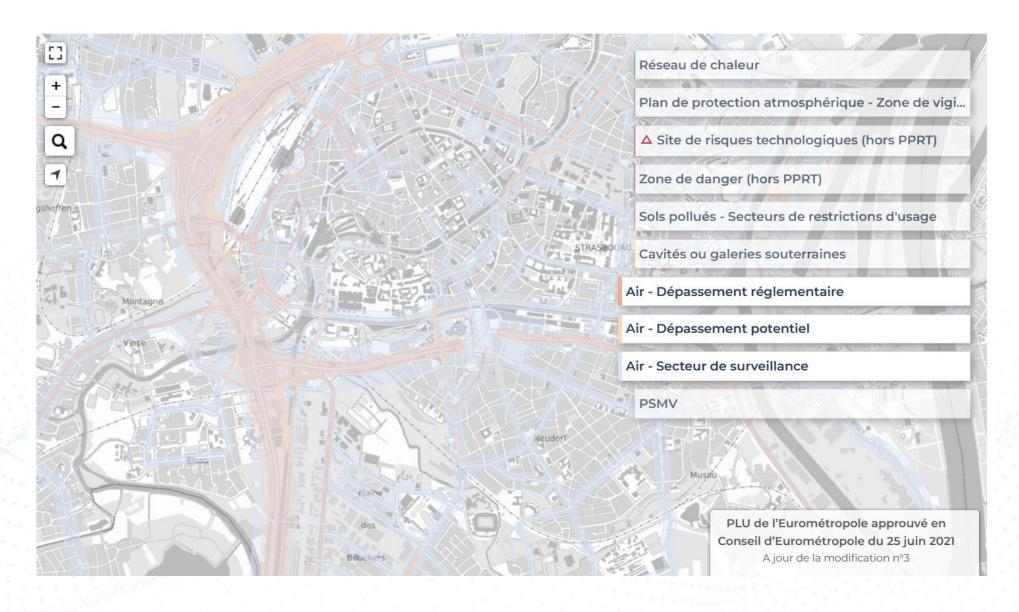
QUALITÉ DE L'AIR AU NIVEAU DE L'EUROMÉTROPOLE DE STRASBOURG (BILAN 2020)

ORIGINE DES ÉMISSIONS AU NIVEAU DE L'EMS (BILAN 2020)


PPA ET DEMANDE ÉMERGENTE D'ÉTUDES DE QUALITÉ DE L'AIR


Le PPA définit les objectifs et les mesures permettant d'amener, à l'intérieur du territoire concerné, les concentrations en polluants atmosphériques à un niveau inférieur aux valeurs limites réglementaires. Il présente entre autres les zones de vigilance où la qualité de l'air doit être prise en compte.

Le PPA de Strasbourg a été approuvé par arrêté préfectoral le 4 juin 2014.


Dispositions 1 à 6 : Réduire les émissions liées au trafic routier

Disposition 7 : intégrer dans l'aménagement urbain la nécessité de limiter l'exposition de la population aux dépassements de valeurs limites.

PLAN LOCAL D'URBANISME PLU

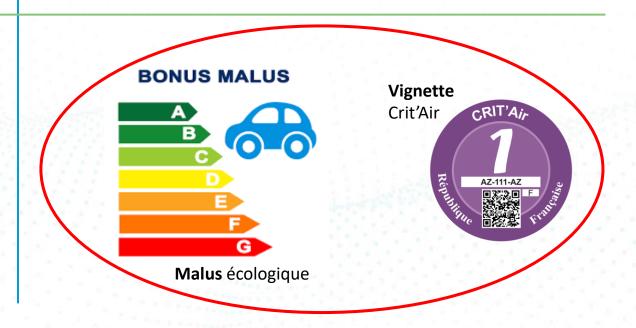
AMÉLIORER LA QUALITÉ DE L'AIR :

EXEMPLES D'ACTIONS ET MESURES

LES DIFFÉRENTS TYPES D'ACTIONS

Incitatives

Gratuité des transports en commun


Restrictives

Circulation différenciée

Aides financières (prime à la reconversion, prime à l'électrique, etc.)

MALUS ÉCOLOGIQUE

Taxe à payer au moment de la **première immatriculation** d'un véhicule **en France** en fonction de ses émissions en **CO**₂

Ne concerne **que les véhicules de tourisme** (catégorie M1 et N1 type pick-up ou transport de voyageurs).

Les véhicules utilitaires à **usage de transport** de marchandise **ne sont pas concernés**.

M1 : Véhicule conçu pour le transport de personnes et comportant, outre le siège du conducteur, 8 places assises au maximum.

N1 : Véhicule utilitaire léger de moins de 3,5 tonnes conçu et construit pour le transport de marchandises.

CO2 (g/km)	Malus 2021	Malus 2022	Hausse
128	0	50	50
129	0	75	75
130	0	100	100
131	0	125	125
132	0	150	150
133	50	170	120
134	75	190	115
135	100	210	110
136	125	230	105
137	150	240	90
138	170	260	90
139	190	280	90
140	210	310	100
141	230	330	100
142	240	360	120
143	260	400	140
144	280	450	170
145	310	540	230
146	330	650	320
147	360	740	380
148	400	818	418
149	450	898	448

ĺ	CO2 (g/km)	Malus 2021	Malus 2022	Hausse
	201	15506	18905	3399
	202	16149	19641	3492
	203	16810	20396	3586
	204	17490	21171	3681
	205	18188	21966	3778
	206	18905	22781	3876
	207	19641	23616	3975
	208	20396	24472	4076
	209	21171	25349	4178
	210	21966	26247	4281
	211	22781	27166	4385
	212	23616	28107	4491
	213	24472	29070	4598
	214	25349	30056	4707
	215	26247	31063	4816
	216	27166	32094	4928
	217	28107	33147	5040
9	218	29070	34224	5154
0	219	30000	35324	5324
	220	30000	36447	6447
	221	30000	37595	7595
	222	30000	38767	8767
1	223	30000	39964	9964
	224 et +	30000	40000	10000

Malus et hausses en euros (d'après https://www.service-public.fr/particuliers/vosdroits/F35947)

MALUS ÉCOLOGIQUE : QUELQUES EXEMPLES

Citroën C4 2022

Essence 130 ch 1,275 t

 $132 g CO_2/km$

150 €

Porsche Cayenne V6 2022

Essence 340 ch 1,985 t

 $260 \text{ g CO}_2/\text{km}$

40 000 €

MALUS ÉCOLOGIQUE : QUELQUES EXEMPLES

Essence 130 ch 1,275 t

 $132 g CO_2/km$

150€

Porsche Cayenne V6 2022 Essence 340 ch 1,985 t

260 g CO₂/km

40 000 €

Porsche Cayenne E-Hybrid 2022

Hybride 460 ch 2,295 t

 $73 g CO_2/km$

CO2 (g/km)	Malus 2021	Malus 2022	Hausse	CO2 (g/km)	Malus 2021	Malus 2022	Hausse
128	0	50	50	201	15506	18905	3399
129	0	75	75	202	16149	19641	3492
130	0	100	100	203	16810	20396	3586
131	0	125	125	204	17490	21171	3681
132	0	150	150	205	18188	21966	3778
	_			206	18905	22781	3876
133	50	170	120	207	19641	23616	3975
134	75	190	115	208	20396	24472	4076
135	100	210	110	209	21171	25349	4178
136	125	230	105	210	21966	26247	4281
137	150	240	90	211	22781	27166	4385
138	170	260	90	212	23616	28107	4491
139	190	280	90	213	24472	29070	4598
140	210	310	100	214	25349	30056	4707
				215	26247	31063	4816
141	230	330	100	216	27166	32094	4928
142	240	360	120	217	28107	33147	5040
143	260	400	140	218	29070 30000	34224 35324	5154 5324
144	280	450	170	219			5324 6447
145	310	540	230	220	30000	36447	_
146	330	650	320	221 222	30000	37595	7595 8767
147	360	740	380	222	30000 30000	38767 39964	8767 9964
148	400	818	418	223 224 et +	30000	40000	10000
149			448	224 81 +	30000	40000	10000
149	450	898	448				

Malus et hausses en euros (d'après https://www.service-public.fr/particuliers/vosdroits/F35947)

MALUS ÉCOLOGIQUE : LE PROTOCOLE WLTP

Comment sont calculées les émissions en CO₂ ?

WLTP: Worldwide harmonized Light vehicles Test Procedures

	Unité	Basse	Moyenne	Haute	Extra haute	Total
Durée	S	589	433	455	323	1 800
Durée des arrêts	S	156	48	31	7	242
Distance	m	3 095	4 756	7 158	8 254	23 262
Proportion des arrêts		26,5%	11,1%	6,8%	2,2%	13,4 %
Vitesse maximale	km/h	56,5	76,6	97,4	131,3	
Vitesse moyenne sans les arrêts	km/h	25,7	44,5	60,8	94,0	53,8
Vitesse moyenne avec les arrêts	km/h	18,9	39,5	56,6	92,0	46,5
Accélération minimale	m/s²	-1,5	-1,5	-1,5	-1,2	
Accélération maximale	m/s²	1,5	1,6	1,6	1,0	

Autonomie moyenne annoncée sur batterie seule : 43 km

VIGNETTE CRIT'AIR

https://www.ecologie.gouv.fr/certificats-qualite-lair-critair

VIGNETTE CRIT'AIR: CAS DE L'EUROMÉTROPOLE DE STRASBOURG

Illustration DNA

Interdiction progressive des véhicules les plus émetteurs

Calendrier de l'interdiction des véhicules

les plus polluants dans la ZFE* de l'Eurométropole

VIGNETTE CRIT'AIR: NORMES EURO

Norme EURO : Doit émettre moins qu'un certain seuil pour être octroyée

Technologie diesel

Norme	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5a	Euro 5b	Euro 6b	Euro 6c	Euro 6d -TEMP	Euro 6d
Cycle d'homologation				NEDC					WLTP-RDE	
Oxydes d'azote (NO _x)		-	500	250	180	180	80	80	80	80
Monoxyde de carbone (CO)	2 720	1 000	640	500	500	500	500	500	500	500
Hydrocarbures (THC)		-			-	1				
Hydrocarbures non méthaniques (HCNM)				<u>.</u>		-				
HC + NO _X	970	700	560	300	230	230	170	170	170	170
Particules (PM)	140	80	50	25	5	4,5	4,5	4,5	4,5	4,5
Particules (PN) (nb/km)			1	<u>.</u>	6 × 10 ¹¹	6×10^{11}				

Valeurs, sauf PN, exprimées en mg/km.

VIGNETTE CRIT'AIR: EXEMPLE DE PARADOXE

EURO 4

Entre le 1^{er} janvier 2006 et le 31 décembre 2010 inclus

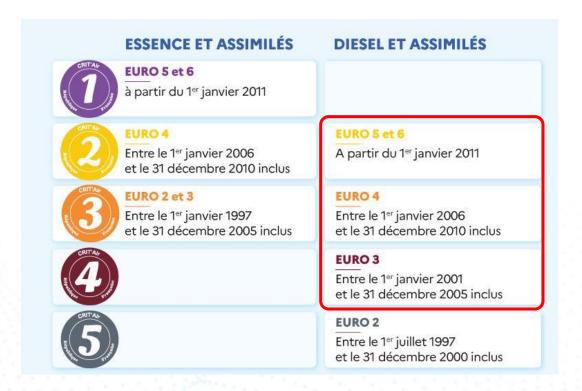
Norme	Euro 3	Euro 4	Euro 5a
Cycle d'homologation		NEDC	٠
Oxydes d'azote (NO _X)	500	250	180
Monoxyde de carbone (CO)	640	500	500
HC + NO _X	560	300	230
Particules (PM)	50	25	5
Particules (PN) (nb/km)		-	6 × 10 ¹¹

Valeurs, sauf PN, exprimées en mg/km.

Paradoxe:

Véhicules diamétralement opposés Même contrainte réglementaire à l'usage

Notion d'égalité (≠ équité)



Renault, Clio III 2007 Diesel 1,09 t 75 ch (5 CV)

Land Rover, Range Rover 2007 Diesel 2,53 t 190 ch (13 CV)

VIGNETTE CRIT'AIR: AUTRE EXEMPLE

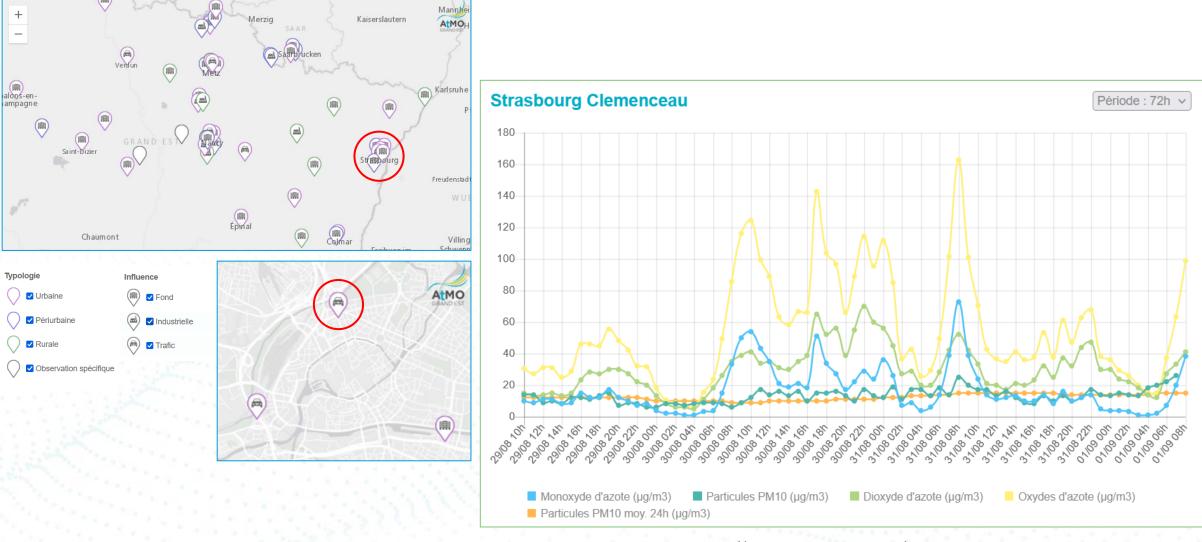
Renault, Clio III, Diesel

Modèle produit entre 2005 (septembre) et 2014

Evolution certaine de la motorisation entre 2005 et 2014, notamment pour anticiper la prochaine norme EURO

Paradoxe: Deux véhicules sortis d'usine (1) le 31 décembre 2005 et (2) le 1^{er} janvier 2006, technologie identique, mais contraintes réglementaires différentes

ETUDIER LA QUALITÉ DE L'AIR

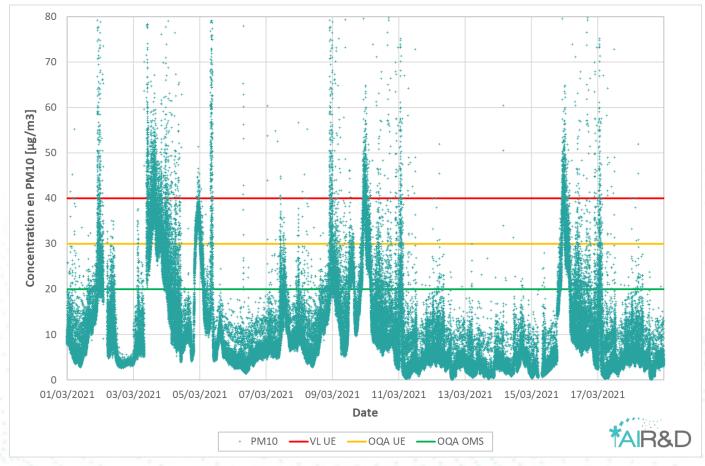

MESURE DE LA QUALITÉ DE L'AIR : LES STATIONS DU RÉSEAU ATMO

Stations de mesure très perfectionnées et précises, mais coûteuses (ordre de prix : 100 000 €).

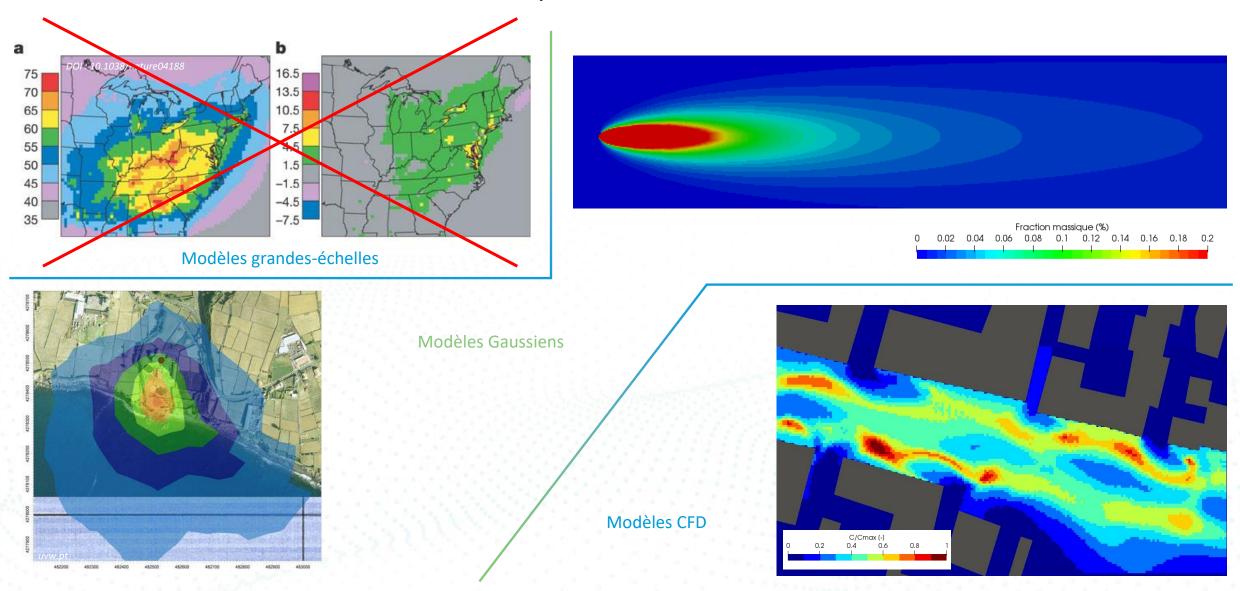
MESURE DE LA QUALITÉ DE L'AIR : LES STATIONS DU RÉSEAU ATMO

http://www.atmo-grandest.eu/donnees-par-station

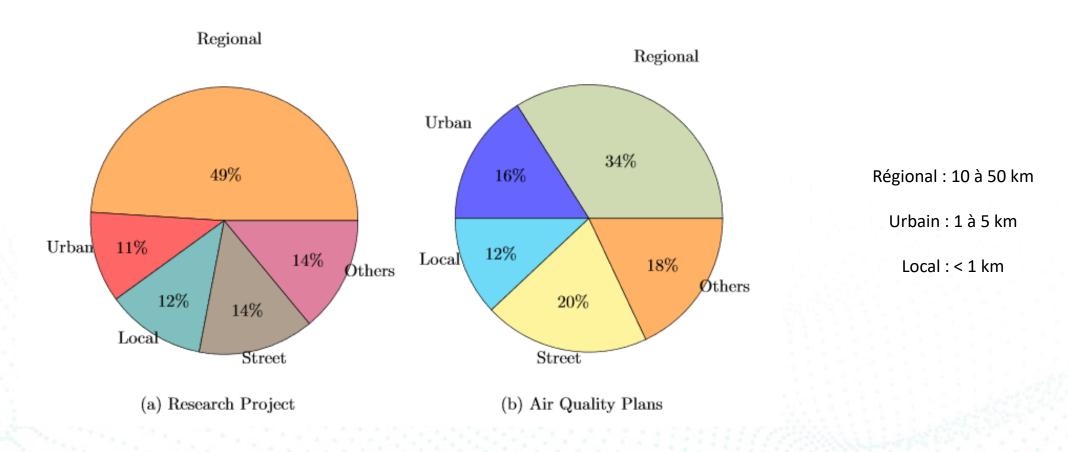
MESURE DE LA QUALITÉ DE L'AIR : DES SOLUTIONS POUR L'INGÉNIERIE


Alternatives adaptées à l'ingénierie : moins précises mais facilement déployables et plus abordables (ordre de prix : 6 000 €)

EXEMPLE DE RÉSULTATS DE MÉTROLOGIE

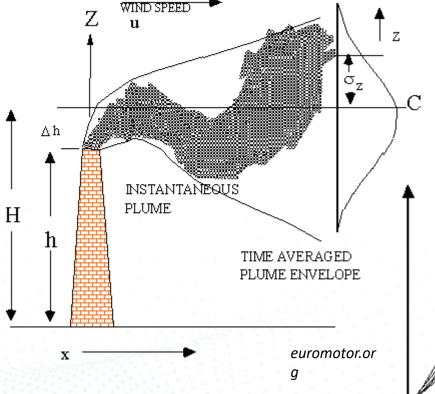


Paramètre	25 ^e centile	50° centile	75 ^e centile	95° centile	Moyenne
Valeur (μg/m³)	4	7	13	34	11

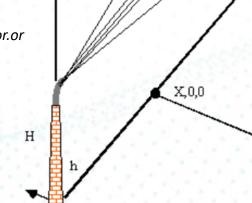

Directive 2008/50/CE	PM10
Valeur limite (moyenne annuelle)	40 μg/m3
Valeur limite (moyenne journalière)	50 μg/m3 (ne pas dépasser plus de 35 fois par an)
Valeur limite (moyenne horaire)	
Objectif de qualité (en moyenne annuelle)	30 μg/m3

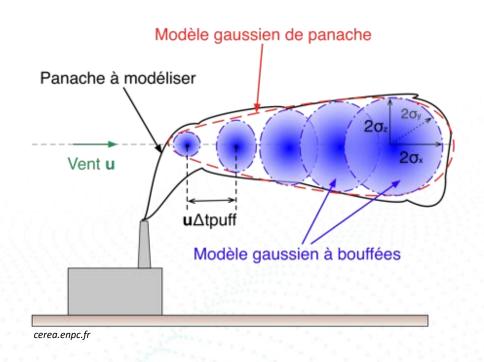
OMS	PM10		
Moyenne annuelle	15 μg/m3		
Moyenne journalière	45 μg/m3 (maximum 3 jours par an)		
Moyenne horaire			

MODÉLISATION DE LA QUALITÉ DE L'AIR : DIFFÉRENTES ÉCHELLES, DIFFÉRENTS MODÈLES

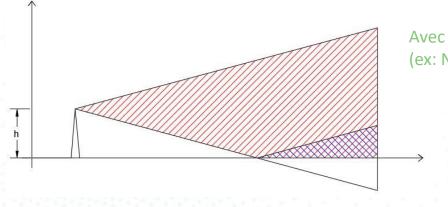

MODÉLISATION DE LA QUALITÉ DE L'AIR : RÉPARTITION DES MODÈLES

Thunis, P., Miranda, A., Baldasano, J., Blond, N., Douros, J., Graff, A., Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., Martilli, A., Rasoloharimahefa, M., Real, E., Viaene, P., Volta, M., and White, L.Overview of current regional and local scale air quality modelling practices: Assessmentand planning tools in the EU. Environmental Science & Policy 65 (Nov. 2016), 13–21.


LE MODÈLE GAUSSIEN: UN MODÈLE BASÉ SUR L'ÉQUATION D'ADVECTION-DIFFUSION


Equation d'advection-diffusion
$$\frac{\partial C}{\partial t} + \nabla \cdot (CU) - \nabla \cdot (D\nabla C) = 0$$

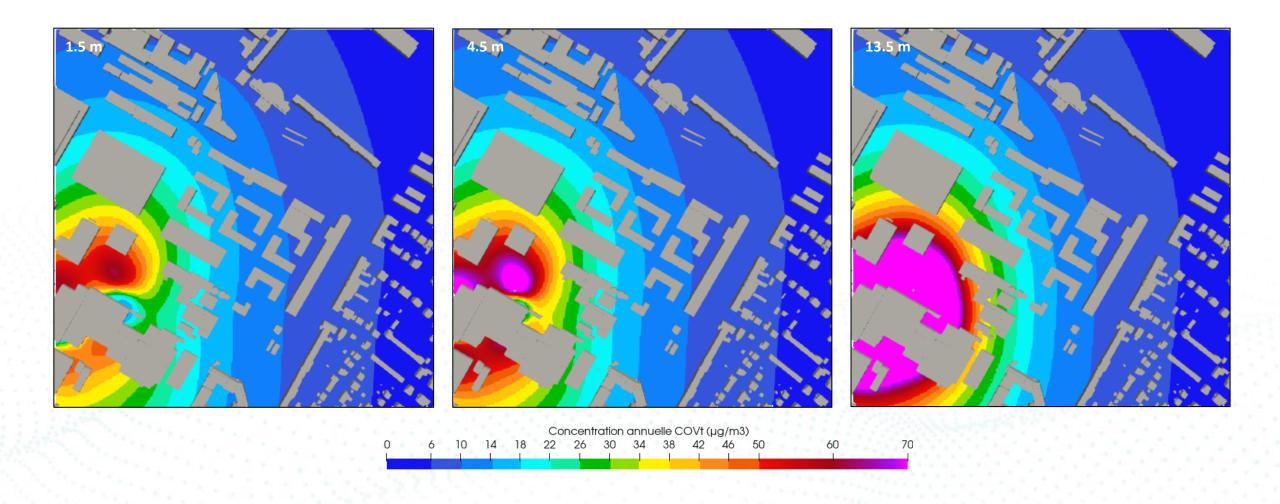
$$\equiv \frac{\partial C}{\partial t} + u_x \frac{\partial C}{\partial x} + u_y \frac{\partial C}{\partial y} + u_z \frac{\partial C}{\partial z} = K_x \frac{\partial^2 C}{\partial x^2} + K_y \frac{\partial^2 C}{\partial y^2} + K_z \frac{\partial^2 C}{\partial z^2}$$


LE MODÈLE GAUSSIEN: UN MODÈLE BASÉ SUR L'ÉQUATION D'ADVECTION-DIFFUSION

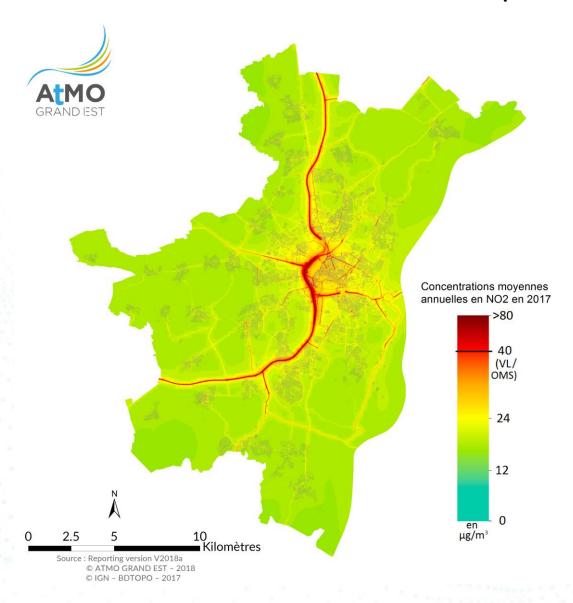
Modèles « à panache »

$$\overline{\mathbf{c}}(x,y,z) = \frac{q_m}{2\pi U \sigma_y \sigma_z} exp \left[-\frac{1}{2} \left(\frac{y^2}{{\sigma_y}^2} + \frac{z^2}{{\sigma_z}^2} \right) \right] \qquad \text{Sans réflexion au sol}$$
 (ex: particules)

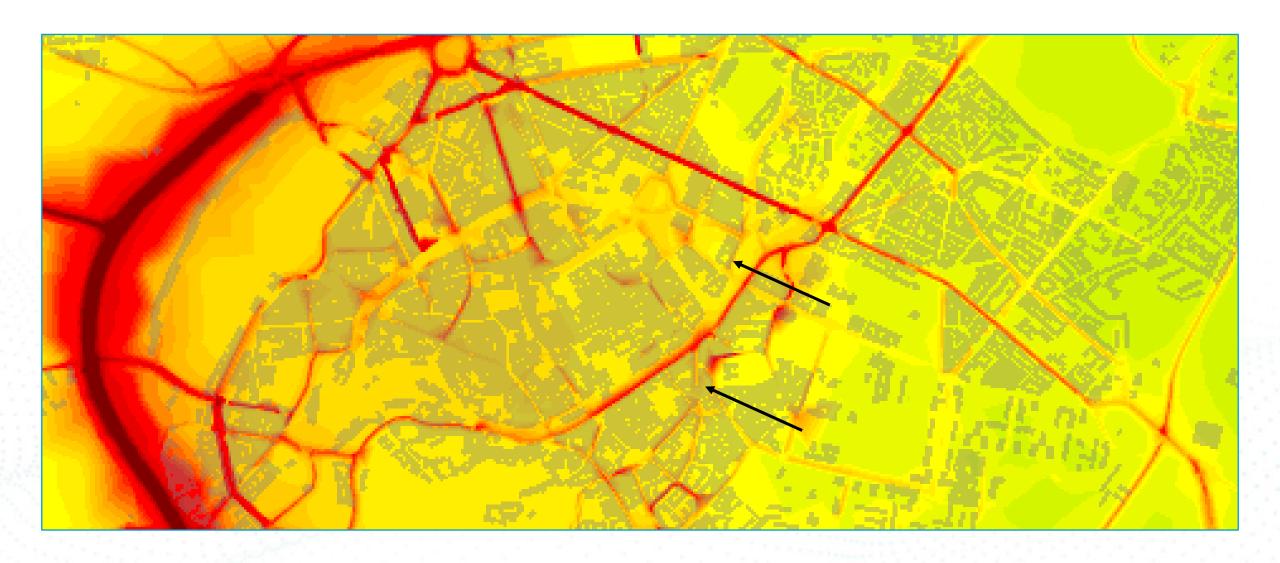
$$\overline{\mathbf{c}}(x,y,z) = \frac{q_m}{2\pi U \sigma_y \sigma_z} exp\left(-\frac{y^2}{2{\sigma_y}^2}\right) \left[exp\left(-\frac{(z-h)^2}{2{\sigma_z}^2}\right) + exp\left(-\frac{(z+h)^2}{2{\sigma_z}^2}\right)\right]$$


Avec réflexion (ex: NO₂, autres gaz)

Hypothèses: régime permanant, vitesse constant uniforme, émission constante, vent selon x, etc.


Modèles « à bouffées »

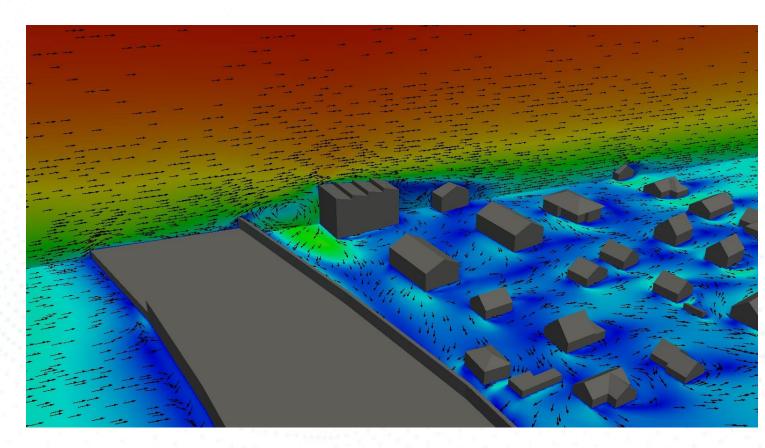
$$\overline{\mathbf{c}}(x,y,z,t) = \frac{1}{[2\pi]^{\frac{3}{2}}} \sum_{i=1}^{i=N} \frac{S_i \Delta t}{\sigma_x \sigma_y \sigma_z} exp \left[-\frac{\left(x - x_i(t)\right)^2}{2\sigma_x^2} - \frac{\left(y - y_i(t)\right)^2}{2\sigma_y^2} \right] \times \left[exp \left(-\frac{\left(z - z_i(t) - h\right)^2}{2\sigma_z^2} \right) + exp \left(-\frac{\left(z - z_i(t) + h\right)^2}{2\sigma_z^2} \right) \right]$$


LE MODÈLE GAUSSIEN : EXEMPLE DE MODÉLISATION GAUSSIENNE POUR LE SUIVI DES REJETS INDUSTRIELS (MODÈLE À PANACHE)

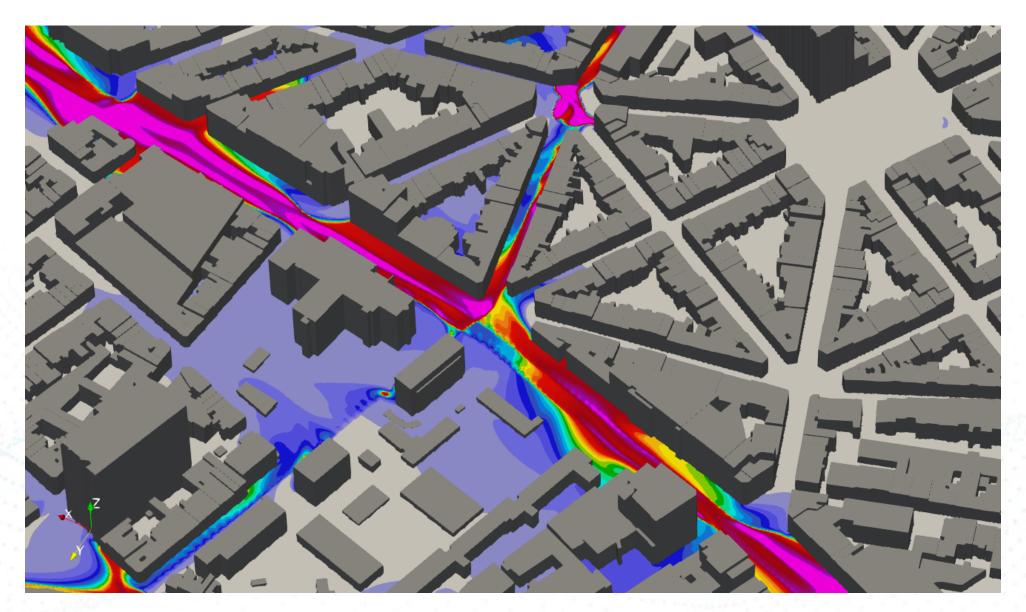
LE MODÈLE GAUSSIEN : EXEMPLE DE MODÉLISATION GAUSSIENNE À GRAND ÉCHELLE SUR L'EMS (MODÈLE LINÉAIRE)

LE MODÈLE GAUSSIEN : EXEMPLE DE MODÉLISATION GAUSSIENNE À GRAND ÉCHELLE (EMS)

MODÉLISATION 3D CFD: UNE MODÉLISATION FINE POUR DES RÉSULTATS PRÉCIS ET LOCALISÉS ...

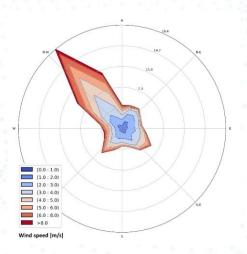

Des équations plus complexes ...

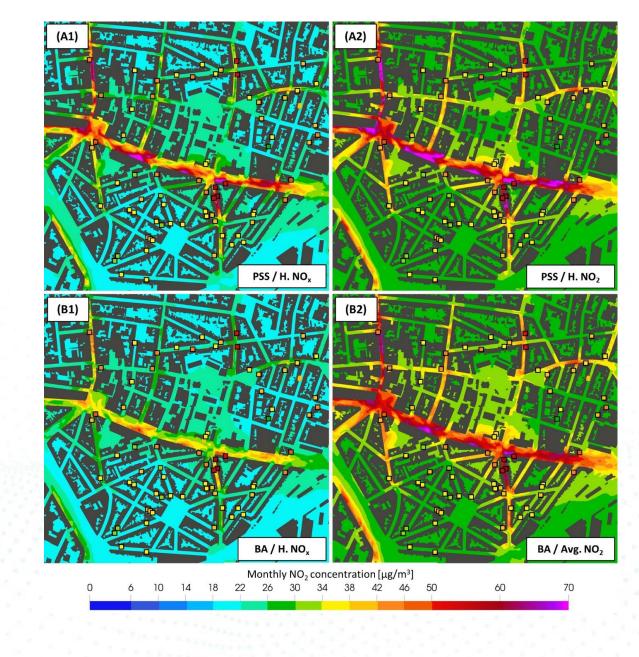
$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla . \left(\rho u \right) &= 0 \\ \rho \left(\frac{\partial u}{\partial t} + u . \nabla u \right) &= - \nabla p + \nabla . \left(2 \mu_{eff} D(u) \right) - \nabla \left(\frac{2}{3} \mu_{eff} (\nabla . u) \right) + \rho g \\ \frac{\partial \rho e}{\partial t} + \nabla . \left(\rho u e \right) + \frac{\partial \rho K}{\partial t} + \nabla . \left(\rho u K \right) + \nabla . \left(u p \right) &= \nabla . \left(\alpha_{eff} \nabla e \right) + \rho g . u \end{split}$$

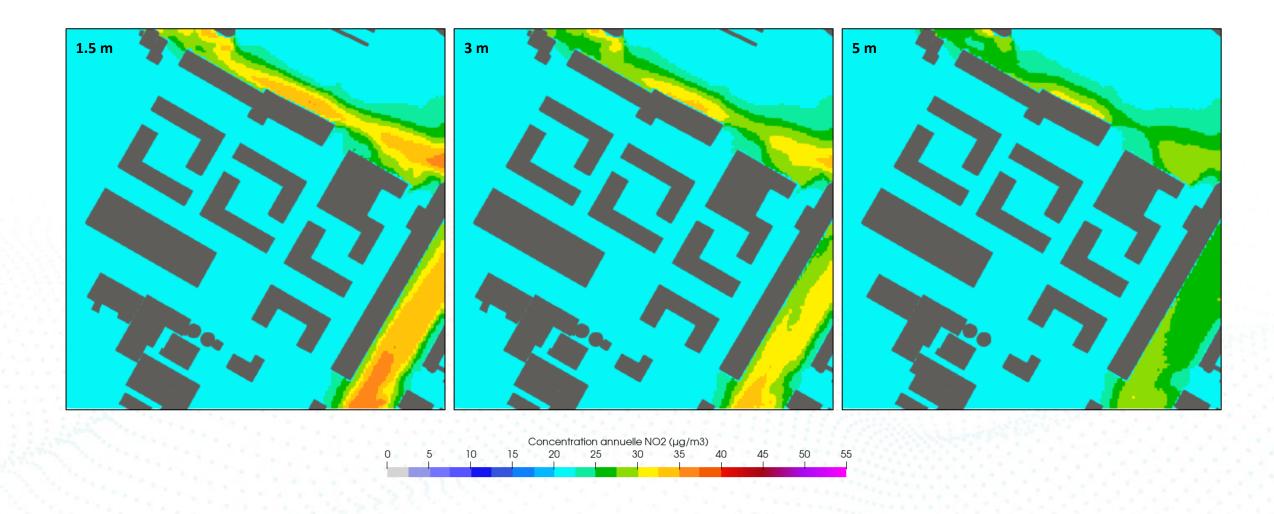

... pour des résultats plus spécifiques

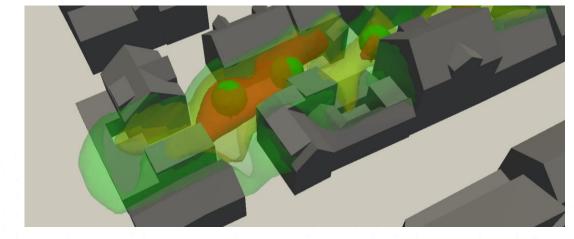
Prise en compte :

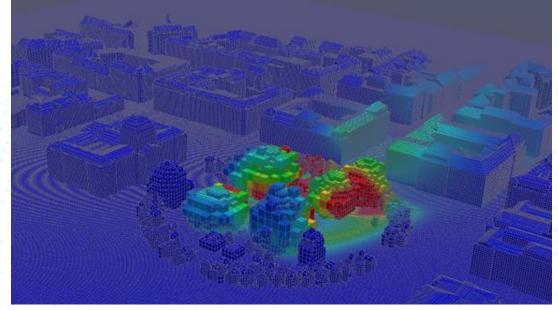
- Du bâti
- De la turbulence
- Des variations de vitesse
- Des recirculations
- Des effets transitoires
- De la stabilité atmosphérique
- ...




MODÉLISATION 3D CFD: ... MAIS AUSSI À PLUS GRANDE ÉCHELLE

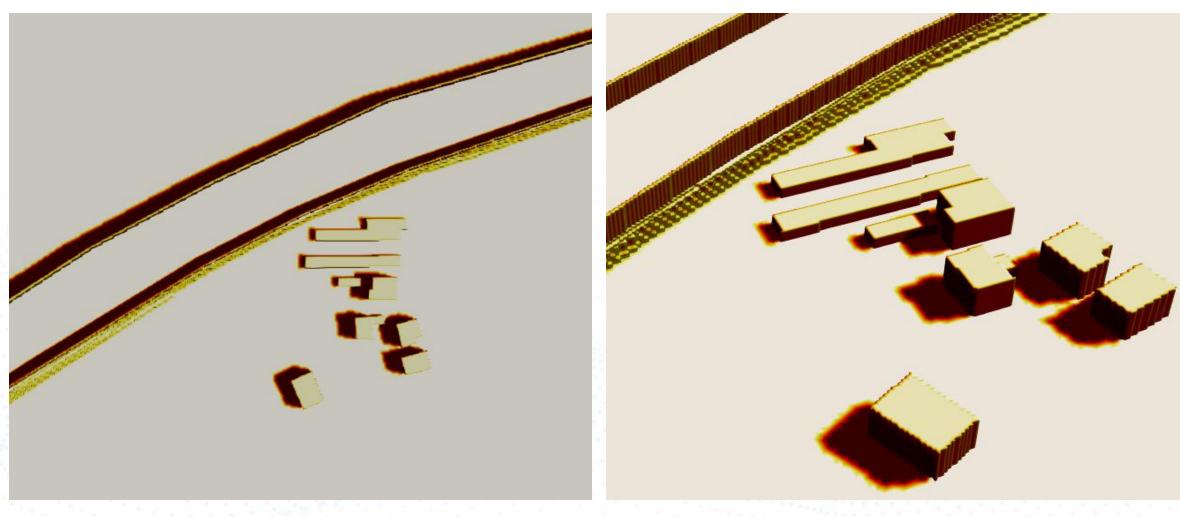

MODÉLISATION 3D CFD: ... MAIS AUSSI À PLUS GRANDE ÉCHELLE


MODÉLISATION 3D CFD: ... ET UTILISABLE POUR LES ÉTUDES D'IMPACT

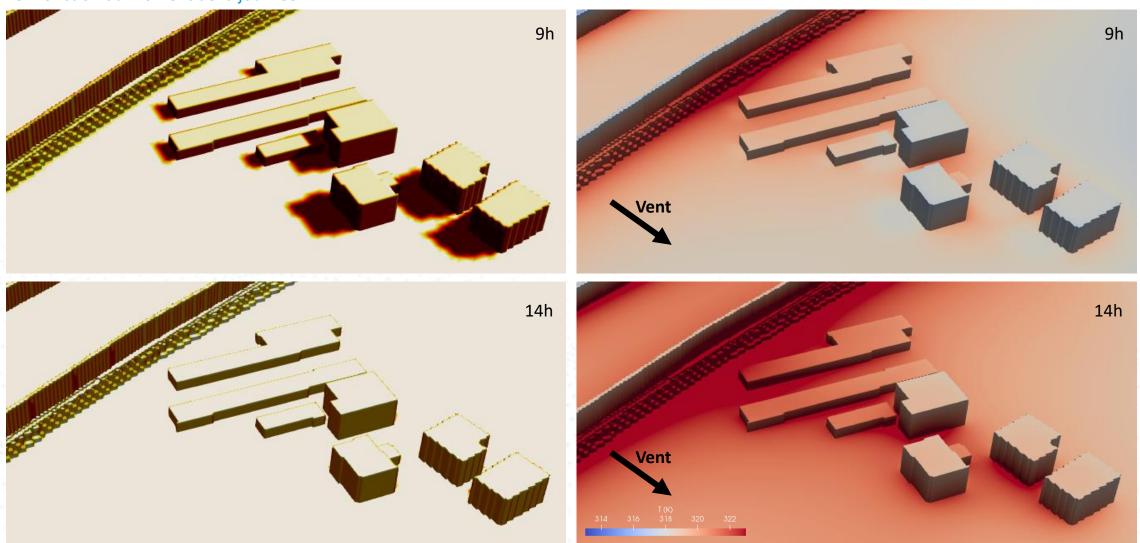


MODÉLISATION 3D CFD: PRISE EN COMPTE DE SITUATIONS COMPLEXES

Prise en compte de la végétation ...



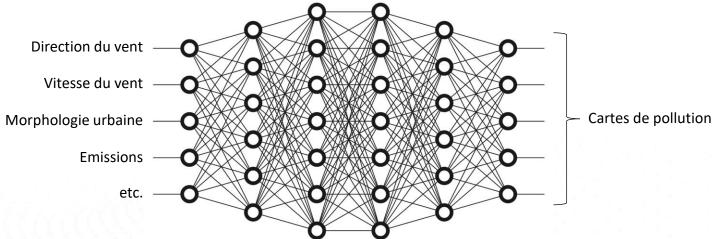
... et étude de la dispersion de polluants biologiques (pollens) ...


MODÉLISATION 3D CFD : PRISE EN COMPTE DE SITUATIONS COMPLEXES

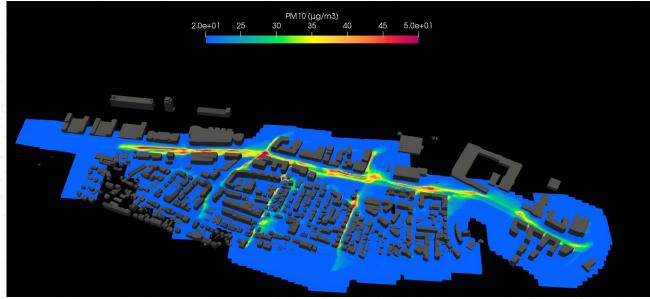
Autres exemples en cas réel ...

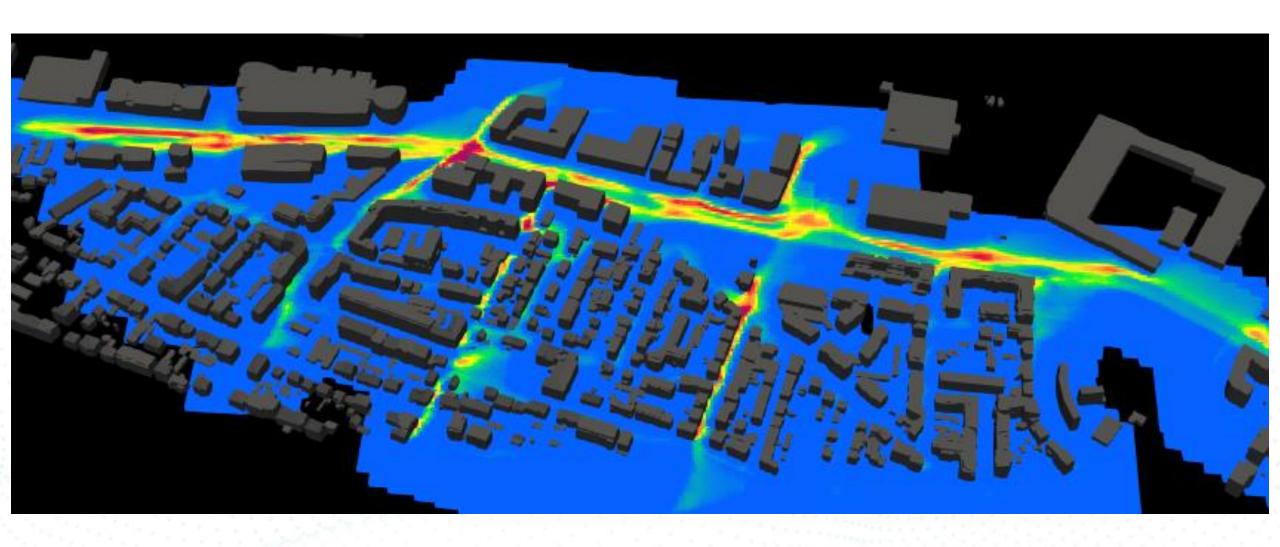
MODÉLISATION 3D CFD: PRISE EN COMPTE DE SITUATIONS COMPLEXES

... en fonction du moment de la journée ...



MODÉLISATION 3D CFD : PRISE EN COMPTE DE SITUATIONS COMPLEXES


... et à plus grande échelle



Modèle d'intelligence artificiel par apprentissage supervisé profond

Exemple de résultat au niveau de l'Avenue du Rhin

X. Jurado et al.

Sustainable Cities and Society 99 (2023) 104951

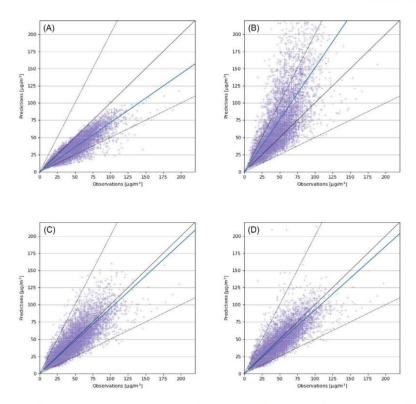


Fig. 8. Observed concentration vs. predicted concentration for (A) using background model (B) using background model + deep learning model with $[NO_x] = [NO_2]$ (C) using background model + Bächlin function for $[NO_x]/[NO_2]$ ratio (D) using background model + deep learning model with PSS for $[NO_x]/[NO_2]$ ratio for the daytime and Bächlin function for the nighttime. In black the first bisector, in teal the linear regression, in dotted line $\pm 50\%$ bisector.

X. Jurado et al. Sustainable Cities and Society 99 (2023) 104951

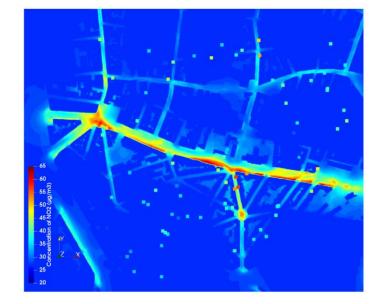
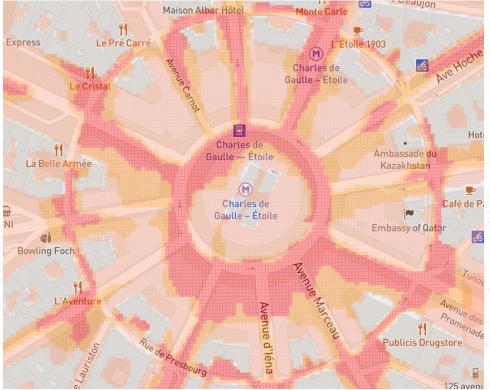



Fig. 12. The dispersion map displays the average NO_2 concentrations obtained using the deep learning model and Bächlin function for the period between April 30th and May 28th in the area of interest at a height of 4.5 m. Additionally, the concentrations measured by the samplers are also presented for comparison.

https://rtdm.follow-air.com/fr/pollutantRealTime

